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Preface

This model investigation was conducted for the U.S. Army Engineer District,
Portland, and authorized by DA Form 2544, Order No. E86820108, dated
8 March 1982, to the U.S. Army Engineer Waterways Experiment Station
(WES), Vicksburg, Mississippi. The study was conducted in the Hydraulics
Laboratory of WES during the period March 1982 to April 1992.

During the course of the model study, representatives of the Portland District
and other navigation interests visited WES at different times to observe special
model experiments and to discuss the results of those experiments. The Portland
District was informed of the study’s progress by monthly reports and special
presentations at the conclusion of each experiment.

This report is being published by the WES Coastal and Hydraulics
Laboratory (CHL). The CHL was formed in October 1996 with the merger of
the WES Coastal Engineering Research Center and the Hydraulics Laboratory.
Dr. James R. Houston is the Director of the CHL, and Mr. Charles C. Calhoun,
Jr., is Assistant Director.

The first-line review of this report was conducted by Mr. T. J. Pokrefke,
Acting Chief of the Navigation Division, CHL. The principal investigator in
immediate charge of the model study was Mr. R. T. Wooley, assisted by
Messrs. E. Johnson and J. W. Sullivan and Ms. D. P. George, all of CHL. This
report was prepared by Mr. Wooley.

Director of WES during preparation and publication of this report was
Dr. Robert W. Whalin. COL Robin R. Cababa, EN, was Commander.

The contents of this report are not to be used for advertising, publication, or
promotional purposes. Citation of trade names does not constitute an official
endorsement or approval for the use of such commercial products.




Conversion Factors, Non-Sl to
Sl Units of Measurement

Non-SI units of measurement used in this report can be converted to SI units

as follows:
Multiply By To Obtain
cubic feet per second 0.02831685 cubic meters per second
degree (angle) 0.01745329 radians
feet 0.3048 meters
| miles (U.S. statute) 1.609344 kilometers
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1 Introduction

Location and Description of Prototype

Bonneville Lock and Dam, on the Columbia River between the states of
Oregon and Washington, are 145 miles 'from the Pacific Ocean and 40 miles
from Portland, Oregon (Figure 1). The project consists of a 76-ft-wide by
500-ft-long lock, an adjacent powerhouse with two turbine/generator units, and
an 18-bay spillway, which was placed in operation in May 1943. Fight addi-
tional turbine/generators were added to the powerhouse and placed in operation
in 1943. A second powerhouse with eight turbine/generators was added to the
project along the Washington shore and placed in operation in 1981. The
Columbia-Snake River navigation system consists of eight locks and dams with
Bonneville Dam being the most downstream and the Dalles Dam being the next
one upstream. Bonneville Lock and Dam create a 48-mile-long reservoir that
provides nearly a slack water pool for navigation from the Bonneville Dam
upstream to the Dalles. The river at the dam is presently divided into three
channels by two islands, Bradford and Cascade Islands. The tailrace for the first
powerhouse forms one channel, the spillway channel the middle channel, and the
tailrace channe] for the second powerhouse the third channel.

The first powerhouse, with the ten turbine/generator units, has a maximum
capacity of approximately 140,000 cfs with the discharge varying depending on
the tailwater elevation, upper pool elevation, total riverflow, and the number of
units available for use. The second powerhouse, with the eight turbine/generator
units, has a maximum capacity of approximately 160,000 cfs with the discharge
varying depending on the tailwater elevation, upper pool elevation, total river-
flow, and the number of units available for use. The normal operating range for
the pool is between elevation (el) 71.5 and el 76.5 as measured at the dam. The
tailwater elevation varies in direct relationship to the river flow from about el 7.0
at 70,000 cfs to el 36.3 at a riverflow of 660,000 cfs.

The spillway is a concrete, gravity structure with eighteen 50-ft-wide bays
separated by 10-ft-wide piers. The original stilling basin dissipated energy with
a hydraulic jump stabilized by two rows of 6-ft-high, trapezoidal-shaped baffles
on a deck at el -16. In 1954 the south half of the stilling basin was repaired by
replacing the downstream row of baffles by a solid end sill and streamlining the

1 A table of factors for converting non-SI units of measurement to SI units is presented on page vii.
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upstream row. The design capacity of the spillway is 1,600,000 cfs at pool el
82.5 and 1,170,000 cfs at pool el 75.5. The spillway releases are controlled by
eighteen 50-ft-wide by 60-ft-high spillway gates. The crest of the spillway is at
el 24.0.

Extensive fish passage facilities, both for upstream and downstream migrants,
are provided at the Bonneville Project. Bonneville Dam, the first hydroelectric
project that upstream-bound adult salmonids encounter on their journey to their
spawning areas, is considered most important by the involved State and Federal
fishery agencies. The project is also considered critical to the downstream
' migrants because of the large numbers of juvenile salmonids that enter the pool
above Bonneville Dam from both artificial and natural propagation sources.

Existing Conditions

A decision was made in the mid-1940's to increase the size of the proposed
navigation locks from the existing lock size at Bonneville (76 ft wide by 500 ft
long). As a result, the seven locks in the navigation system upstream from
Bonneville were constructed with useable chamber dimensions of 86 ft (width)
by 675 ft (length) and they can pass multiple barge tows in a single lockage.
Therefore, tows approach Bonneville with four or five barges and the smaller
lock at Bonneville has now become the bottleneck of the system. Hazardous
conditions exist both upstream and downstream of the lock due to the high-
velocity currents and the alignment of the approach channel to the lock. Down-
bound tows approaching Bonneville stop about a mile upstream of the dam,
separate the tow, and enter the channel approaching the lock pushing one or two
barges. There are high-velocity currents in the navigation channel where it is
constricted between Bradford Island and Eagle Point and approaching the lock
and the powerhouse. Downbound tows are required to approach the lock with
caution and attempt to maintain proper alignment while reducing speed to enter
the lock chamber. The upstream approach to the lock has a landside guide wall
which does not provide any protection for the tow from the flow moving toward
the powerhouse. Because of the unfavorable currents in the upper approach,
downbound tows try to hug the guide wall and enter the lock chamber without
stopping. This has caused some damage to the guide wall and the wing wall of
the lock. The currents in the navigation channel, the need for multiple lockage
for a tow, and the distance upstream of the mooring facility have created delays
of as much as 8 hr. Some navigation problems exist for upbound tows
approaching the lock, although they are not as serious as the upstream approach.
Upbound tows approaching the lock are required to navigate into the lower
approach at a high speed to maintain control and attempt to stop in the confined
approach channel.

Present Development Plan

The plan selected for refinement through additional experiments was an
86-ft-wide by 675-ft-long new lock constructed immediately south of the existing
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lock. The location of the new lock was influenced by the area available and the
foundation for the upper gate sill. It was recognized prior to this study that
major channel modification could be necessary to develop satisfactory naviga-
tion conditions for tows using the new lock. Construction of the project required
excavation of the downstream lock canal through the Bonneville project
grounds, and relocation of about one-quarter mile of the Union Pacific Rail-
road’s main line and a portion of the North Pacific Division’s Hydraulic
Laboratory.

Need for and Purpose of Model Study

The general design of the new lock at Bonneville was based on sound
theoretical design practice and experience with similar structures. However,
navigation conditions vary with location and flow conditions upstream and
downstream of a structure, and an analytical study to determine the hydraulic
effects that can reasonably be expected to result from a particular design is both
difficult and inconclusive. Since the new lock was to be located in a limited area
adjacent to the existing lock and the forebay of the lock would not be parallel
with the currents entering the forebay, it was important that the alignment of the
channel and design of the guard wall provide satisfactory current patterns for
navigation. Therefore, a comprehensive mode] study was considered necessary
to investigate conditions that could be expected with the proposed design and to
develop modifications required to ensure satisfactory navigation conditions. The
specific purposes of the model study were to:

a. Investigate the proposed location for the new lock.

b. Determine optimum channel alignment and channel training structures
required.

c¢. Determine modifications required to provide satisfactory navigation
conditions.

d. Investigate the impacts of the new lock and any channel modifications
on migrants and avoid or minimize any adverse effects on salmonids
migrating upstream or downstream through the project.

e. Demonstrate to navigation interests the conditions resulting from the
proposed design and to satisfy these interests of its acceptability from a

navigation standpoint.

f. Design a guard wall that would provide satisfactory navigation condi-
tions and minimize any impacts on migrants.

8- Demonstrate to navigation interests conditions that could exist during
construction of the new guard wall and lock approaches.

Chapter 1
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2 The Model

Description

The model (Figure 2) reproduced approximately 3.7 miles of the Columbia
River channel, extending approximately 5,400 ft upstream of the dam and
14,200 ft downstream of the dam, including the adjacent overbank area. Also
included were the 76-ft-wide by 500-ft-long lock, a ten-unit powerhouse adjacent
to the lock, a spillway containing eighteen bays, and an eight-unit powerhouse
along the right descending bank. The model was of the fixed-bed type, with the
channel and overbank areas molded in sand-cement mortar to sheet metal
templates. Portions of the model, where changes in bank alignments and channel
configurations could be anticipated, were molded in pea gravel to permit modifi-
cations that might be required to provide satisfactory conditions. The lock, dam
crest, powerhouses, piers, and guard walls were fabricated out of sheet metal
and/or Plexiglas. The dam gates were simulated schematically with simple sheet
metal, slide-type gates. The model was molded to a recent hydrographic and
topographic survey.

Scale Relations

The model was built to an undistorted scale of 1:100, model to prototype, to
effect accurate reproduction of velocities, crosscurrents, and eddies affecting
navigation. Other scale ratios resulting from the linear scale ratio are as follows:

Characteristic Units of Length Model Prototype
Area A= 1:10,000

Velocity V= 1:10

Time T= 1:10

Discharge D= 1:100,000
Roughness (Manning’s n) Manning’s n = 1:2.15

Chapter 2 The Model
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Measurements of discharges, water-surface elevations, and current velocities can
be transferred quantitatively from model to prototype equivalents by means of
these relations.

Appurtenances

Water was supplied to the model by means of a 10-cfs pump operating in a
recirculating system. The discharge was controlled and measured at the upper
end of the model by means of a valve and venturi meter. Water-surface eleva-
tions were measured by means of piezometer gauges located in the model
channel and connected to a centrally located gauge pit (Figure 2). A movable
tailgate was provided at the lower end of the model to control the tailwater
elevation downstream of the dam, and the slide-type gates in the spillway were
used to maintain the upper pool elevation during controlled riverflows.

Model Adjustment

The model was constructed with a brushed-cement mortar finish to provide a
roughness factor (Manning's n) of about 0.0135, which corresponds to a proto-
type of about 0.029. Based on experience with other models of this type,
brushed concrete gives a close approximation of the roughness required to repro-
duce prototype conditions. With the model reproducing existing conditions, the
model was checked against available prototype data, previous model data, and
the constant discharge design tailwater and headwater rating curves. The results
indicated the model reproduced with a reasonable degree of accuracy conditions
in the prototype based on available data.

Chapter 2 The Model




3 Experiments and Results

Experiments were concerned primarily with the study of flow patterns,
measurements of velocities and water-surface elevations, and the effects of
currents on the movement of the model tow into the lock approaches during
navigable riverflows. Many of the modifications were developed during pre-
liminary experiments. Data obtained during these experiments were sufficient to
assist in the development of the plan that appeared to provide satisfactory
results. Results of the preliminary experiments are not included in this report.

Experiment Procedures

Experiments were conducted by introducing the proper discharges and main-
taining the upper pool elevation by releasing the proper discharge through the
powerhouses and the spillway. The lower pool elevation was maintained by
rasing or lowering the tailgate. A selection of representative riverflows were
used for the experiments based on information furnished by the U.S. Army
Engineer District, Portland, as follows:

a. 70,400-cfs total riverflow (first powerhouse discharge = 28,000 cfs, spill-
way bays = 2,400 cfs, and second powerhouse = 40,000 cfs) with upper
pool el 74.0 and tailwater el 7.4.

b. 118,400-cfs total riverflow (first powerhouse discharge = 56,000 cfs,
spillway bays = 2,400 cfs, and second powerhouse = 60,000 cfs) with
upper pool el 74.0 and tailwater el 11.3.

¢. 200,400-cfs total riverflow (first powerhouse discharge = 98,000 cfs,
spillway bays = 2,400 cfs, and second powerhouse = 100,000 cfs) with
upper pool el 74.0 and tailwater el 16.6.

d. 335,000-cfs total riverflow (first powerhouse discharge = 140,000 cfs,
spillway bays = 35,000 cfs, and second powerhouse = 160,000 cfs) with
upper pool el 74.0 and tailwater el 16.6 (annual flow).

e. 485,000-cfs total riverflow (first powerhouse discharge = 140,000 cfs,

spillway bays = 185,000 cfs, and second powerhouse = 160,000 cfs) with
upper pool el 74.0 and tailwater el 30.7 (10-year frequency flow).

Chapter 3 Experiments and Results




f- 660,000-cfs total riverflow (first powerhouse discharge = 140,000 cfs,
spillway bays = 360,000 cfs, and second powerhouse = 160,000 cfs) with
upper pool el 74.0 and tailwater el 36.3 (100-year frequency flow).

The upper pool elevation was controlled at Gauge B, which was located
immediately upstream of the spillway in approximately the same location as the
prototype gauge. The tailwater elevation was controlled to a tailwater-versus-
discharge rating curve developed by the Portland District at Gauge 10, which
was located near the downstream end of the model.

The river is separated into three channels through the Bonneville reach by
two islands; Bradford and Cascade Islands. The channel approaching the first
powerhouse and the lock forms the first channel, the main river approaching the
spillway forms the middle channel, and the forebay and tailrace channel for the
second powerhouse forms the third channel. The primary purpose of this study
was to develop satisfactory navigation conditions with the new lock while
minimizing any adverse effects of modifications on the migration of salmonids.
Therefore, during the early stages of the study, the 335,000-cfs riverflow was
selected as the design flow. The 335,000-cfs river flow was selected because it
is an annual event, and during the event both powerhouses could be operating at
maximum discharge with some flow though the spillway. This would tend to
create the maximum velocities in the navigation channel approaching the
existing and new locks and high velocities near the confluence of the lock canal
and the river channel downstream of the dam.

Velocities and current directions were measured in the model by means of
wooden cylindrical floats weighted on one end to simulate the maximum
permissible draft for loaded barges using the waterway (14-ft prototype). The
paths of floats were plotted with respect to ranges established for that purpose,
and velocities were measured by timing the travel of the floats over measured
distances. In turbulent areas or where eddies or crosscurrents exist, only the
main trends are shown. Point velocities were measured with a miniature
magnetic velocity meter that measured both the velocity and direction of the
current. Confetti was used to illustrate the surface current pattern and time-lapse
photography was used to record the pattern for comparison to other plans. Dye
was also introduced into the model to illustrate the current pattern and these
patterns were recorded with time-lapse photography. Surges in water-surface
elevation were measured with sonic water-level gauges and surges in the velocity
of the current were measured with a miniature velocity meter.

With existing conditions, downbound tows using the Bonneville Lock must
break or reduce the size of their tow to one or two barges before entering the
channel between Bradford Island and the Oregon shore. Therefore, a model tow
representing a towboat and two barges was used to demonstrate, document, and
evaluate navigation conditions with the model simulating existing conditions.
With the new lock in place, a model tow, consisting of a towboat and four
barges, was used to demonstrate, document, and evaluate the effects of currents
on tows approaching and leaving the new lock and while moving through the
river channel upstream and downstream of the lock. The overall size of the

Chapter 3 Experiments and Results 9




10

towboat and tow selected for design of the project was 650 ft long by 84 ft wide
loaded to a draft of 14 ft. The towing industry indicated there are several barge
configurations that would fit these dimensions. However, only one of the con-
figurations would have a significant influence on the maneuvering capabilities of
the tow and could influence the overall evaluation of navigation conditions. The
towboat could be centered behind the flotilla of barges allowing the tow full
maneuvering capabilities or the towboat could be set to one side of the flotilla
with a small barge alongside of the towboat. The latter conditions would restrict
the maneuvering characteristics of the towboat and increase the difficulty for a
tow to maneuver through the reach. It was decided early on that the more
maneuverable arrangement would be used in the preliminary design of the
project and the final design would be evaluated with the more restricted tow.
The tow was equipped with twin screws and propelled by a small electric motor
operating from batteries located in the tow; the rudders and speed of the tow
were remote controlled. The towboat could be operated in forward or reverse
with the power adjusted by means of a rheostat to a maximum speed comparable
to that of the towboats expected to use the Columbia River waterway.

Base Experiments with Existing Conditions
Description

Base experiments were conducted with the model reproducing existing
conditions as shown in Figure 2. The purposes of the experiments were to verify
that the model was reproducing known prototype conditions and to provide
information and data that could be used to evaluate the effects of the proposed
modifications on water-surface elevations, current direction and velocities, and
navigation conditions. The principal features reproduced or simulated in the
model, as shown in Figures 2 - 9, included:

a. A navigation lock with clear chamber dimensions of 76 ft wide by 500 ft
* long along the Oregon shore (Figure 5). The top of the lock walls were at
el 85.0. A landside 668.6-ft-long guide wall extended upstream of the
lock and a 516-ft-long guide wall extended downstream from the lock.

b. A 1,024-ft-long powerhouse with ten generator/turbines extended across
the channel from the lock along the Oregon shore to Bradford Island
(Figures 3 - 5).

c¢. A 1,230-ft-long spillway with 18 gate bays extended across the main river
channel from Bradford Island to the Washington shore (Figure 6). The
crest of the dam is at el 24.0.

d. A second powerhouse with eight generator/turbine units extended from
Cascade Island to the Washington shore (Figure 7). '

e. Various fish ladder and bypass units.

Chapter 3 Experiments and Results
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Results of base experiments with existing conditions

Water-surface elevations. Water-surface elevations obtained with existing
conditions are shown in Table 1. These data that show the slope in water-
surface elevation along the navigation channel varied from less than 0.1 to 0.1 ft
per mile upstream of the dam (Gauges 1-5) with the 70,400- and 485,000-cfs
riverflows, respectively, and from about 0.2 to 1.0 ft per mile downstream of the
dam (Gauges 6-10) with the 70,400- and 660,000-cfs riverflows, respectively.

Current directions and velocities. Current directions and velocities
obtained with existing conditions are shown in Plates 1 - 6. These data show
that the currents separate from the left bank as it enters the modeled reach and a
large counterclockwise eddy forms along the left bank immediately upstream of
Eagle Point. The currents move past Eagle Point and reattach to the left bank
about 1,200 ft downstream of Eagle Point and then run parallel to the left bank to
the lock. At that point, the current turns toward the powerhouse. With the lower
river discharges when the powerhouse discharge was low, a large clockwise
eddy formed along the Oregon shore of Bradford Island that extended upstream
trom the powerhouse to the head of Bradford Island. As the riverflow increased
and the powerhouse discharge increased, the eddy reduced in size. The maxi-
mum velocity of the currents that influenced tows in the upstream approach to
the lock varied from 1.0 to 5.2 fps upstream of Eagle Point, 1.0 to 3.8 fps in the
channel between Eagle Point and the head of Bradford Island, and 0.5 to 4.5 fps
near the upstream end of the guide wall with the 70,400- and 335,000-cfs (annual
event) riverflows, respectively. As the riverflow increased to 660,000 cfs
(100-year event) the velocity of the currents in the main channel near Eagle Point
and in the channel between Eagle Point and Bradford Island increased, but the
velocity of the currents approaching the lock remained about the same because
the powerhouse discharge remained the same. Downstream of the lock the flow
passing through the powerhouse follows the left bank of the powerhouse tailrace,
moves across the lower approach of the lock, and then runs parallel to the left
bank from the lock downstream to Tanner Creek. A large low-velocity eddy
formed in the mouth of the lock approach. The maximum velocity of the cur-
rents that would affect tows entering and leaving the lock ranged from 2.0 to
5.0 fps near the lower lock approach, 3.6 to 10.9 fps near Tanner Creek, and 3.0
to 6.6 fps about 5,000 ft downstream of Tanner Creek with the 70,400 and
335,000 cfs (annual event) riverflows, respectively. As the riverflow increased
to 660,000 cfs (100-year event), the velocity of the currents increased somewhat.

Current directions and velocities measured with the magnetic velocity meter
are shown in Plates 7 - 12. Measurements were made near the water surface, at
mid-depth in the water column, and near the bottom of the channel. These mea-
surements were made along the navigation channel where modifications were
expected to be made so a comparison could be made later between base condi-
tions and the recommended plan for the project. As expected, these data show
some differences in the direction and velocity of the currents compared to the
float velocities and differences between measurements made at different depths
through the water column.
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Navigation conditions. Due to the navigation conditions, channel configura-
tion, and lock size, tows were pushing one or two barge tows through the project.
Therefore, model experiments were conducted with a 42-ft-wide by 500-ft-long
tow representing two 42-ft-wide by 200-ft-long barges with a 100-ft-long pusher.
These experiments were to verify that the model was reproducing known naviga-
tion conditions prior to installation of the new lock and its appurtenances.
Downbound tows could drive through the channel between Eagle Point and
Bradford Island by favoring the Bradford Island side, drive to the lock guide
wall, start reducing speed along the guide wall, and enter the lock chamber.
However, if the tow stopped upstream of the lock chamber or reduced speed to a
normal approach speed (1.0 - 2.0 mph), the head of the tow was moved toward
the powerhouse and had great difficulty holding on the guide wall. Upbound
tows encountered high-velocity currents in the channel between Bradford Island
and the Oregon shore but could move upstream without any major difficulties
provided they had sufficient power to push against the currents. An upbound
tow had some difficulties making the turn from the Bradford Island channel into
the main river channel due to the alignment of the channel and the alignment
and velocity of the currents in the reach.

Experiments with Original Design

Description

The original design (Figures 8 and 9) was the same as existing conditions,
except for the following:

a. A navigation lock with clear chamber dimensions of 86 ft wide by 675 ft
long with a 900-ft-long floating guard wall was added immediately inland
of the existing lock ( Figure 9). The tops of the lock walls were at el 90.

b. The new 900-ft-long floating guard wall extended upstream from the
riverside lock wall to sta 12+90.43. The bottom of the guard wall was
15 ft below the water surface or about 1 ft below the normal draft of a
loaded barge (14 ft).

¢. The existing upper guide wall of the lock was removed and the left bank
was excavated to provide a navigation channel approaching the new lock.

d. A solid guide wall extended upstream from the landside lock wall about
1,360 ft to sta 84+23.62. The guide wall was angled about 15 deg landward
from the center line of the new lock and extended upstream to tie into the
existing bank. The guide wall also served as a retaining wall for the left
bank excavation. A 50-ft-wide berm with a top elevation of 45.0 extended
along most of the length of the wall to provide stability. The top of the
guide wall was at el 81.0.
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e. About 400 ft of the upstream end of the existing lock guide wall was
removed to allow construction of a guard wall for the new lock.

. A 50-ft-diam cell was placed in the angle between the old guide wall and
the new guard wall to support the floating guard wall.

g A 550-ft-long guide/retaining wall extended downstream from the
landside lock wall and was in line with the lock chamber. A 284.06-ft-
long guide/retaining wall extended downstream from the riverside lock
wall and was angled toward the river 30 deg relative to the center line of
the lock.

h. A 250-ft-wide channel extended downstream from the new lock to its
confluence with the main river channel. The bottom of the channel was at
el -17.0 with side slopes of 1V on 2.5H. The channel entered the main
river channel at an angle of about 40 deg.

Results of experiments with original design

Water-surface elevations. Water-surface elevations obtained with the
original design are shown in Table 2. These data show that the slope in water-
surface elevations was generally the same as with existing conditions except for
minor changes near the new lock approach and the downstream end of the lock
canal.

Current directions and velocities. Current directions and velocities
obtained with the original design are shown in Plates 13 - 17. Confetti showing
current patterns in the upper lock approach with the 335,000-cfs total riverflow
and the first powerhouse discharge of 140,000 cfs is shown in Photo 1. These
data show that the currents in the main river channel and the first powerhouse
channel were generally the same as with existing conditions, except in the
immediate vicinity of the new lock. The currents in the first powerhouse channel
generally followed the left bank approaching the new lock and moved across the
upper lock approach toward the first powerhouse. The guard wall of the new
lock extended upstream into the navigation channel at an angle to the currents.
The currents approached the upper end of the new guard wall at an angle of
about 25 deg and the velocity of the currents varied from about 1.0 to 3.4 fps
with flows ranging from 70,000 to 660,000 cfs. These data show a large low-
velocity counterclockwise eddy formed in the downstream entrance of the lock
canal. The velocity of the currents moving across the entrance of the canal
varied from about 1.3 to 6.2 fps. Upbound tows approaching the lock would
navigate along the right bank to a point opposite the canal entrance, move across
the river, and turn into the canal. The velocity of the current they would
encounter varied from about 3.3 to 16.8 fps along the right bank opposite Tanner
Creek, 3.4 to 12.3 fps at mid-river opposite the canal entrance, and 1.3 to 6.2 fps
at the canal entrance with the 70,400- and 660,000-cfs riverflows, respectively.
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Navigation conditions. With the new lock in place, navigation experiments
were conducted using the 650-ft-long by 84-ft-wide design size tow loaded to a
draft of 14 ft. The more maneuverable configuration ( towboat centered behind
the barges) was used for the initial evaluation and design. These experiments
indicate navigation conditions could be hazardous for tows entering and leaving
the upper lock approach with riverflows of 200,400 cfs and above. Downbound
tows had major difficulties navigating through the channel between the upstream
end of Bradford Island and Eagle Point due to the alignment and the velocity of
the currents. The large eddy that formed along the left bank immediately
upstream of Eagle Point increased the maneuvering required for the tow to exit
the main river channel and enter the first powerhouse channel. A downbound
tow, moving close along the left bank upstream of Eagle Point, was moved into
the eddy and out of alignment with the channel entrance. The tow was then
required to make additional maneuvers to navigate around Eagle Point with a
possibility of being grounded on the point. With the higher riverflows when the
spillway was in operation, tows approaching the entrance to the first powerhouse
channel 200 to 300 ft riverward of the left bank had difficulties making the turn
into the first powerhouse channel and then turning to align with the lock due to
the sharp “S” turn in the navigation channel and the alignment and velocity of
the currents. The alignment and velocity of the currents along the left bank in
the first powerhouse channel made navigating the channel very difficult. As the
tow reduced speed to enter the forebay of the lock, there was a strong tendency
for the currents to move the tow riverward of the guard wall and into the power-
house (Photos 2 and 3). As the tow entered the lock forebay the head of the tow
was pulled toward the guard wall with considerable force and the tow
approached the guard wall at about a 20-deg angle and had difficulties landing
on the wall at a safe speed. There was a tendency for the tow to be pinned on the
guard wall by the currents, and upbound tows had major difficulties breaking
free of the wall and moving upstream out of the lock forebay. A tow moving
upstream out of the lock forebay aligned with the guard wall would be rotated
around the upstream end of the guard wall and may not be able to recover before
being moved into the powerhouse (Photo 4). Therefore, the tow was required to
execute maneuvers to move the head of the tow away from the guard wall and
align with the landside guide wall prior to moving out of the forebay. These
maneuvers could require considerable time and be very difficult to execute. An
upbound tow would also have difficulties making the turn from the powerhouse
channel into the main river channel due to the alignment and velocity of the
currents.

With the higher riverflows, downbound tows leaving the lower lock approach
would have some difficulties moving from the lock canal into the main river
channel. As the tow left the lock canal and entered the river channel, there was a
tendency for the currents to move the tow into the left bank of the canal at its
intersection with the river channel. A normal approach to the new lock for
upbound tows would be to navigate along the right bank in the slower velocities
to a point opposite the canal entrance, then cribbing or moving across the river,
remaining parallel with the currents and the bank, and turn into the canal by
allowing the head of the tow to rotate into the canal entrance while maintaining
control of the tow. Tows with sufficient power to move upstream against the
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currents could approach the entrance to the canal without any major difficulties.
However, when the tow started its turn into the lock canal there was not
sufficient clearance for the tow to make the required maneuver. There was a
tendency for either the head of the tow to be grounded on the right descending
bank of the canal or the stern of the tow to be grounded on the left bank of the
canal.

Lock Emptying Experiments. Experiments were conducted to measure
surges in water-surface elevations and the velocity of the currents in the down-
stream lock canal at selected locations (Figure 10). Surges were recorded during
lock emptying with various head. Surges in water-surface elevations were
measured with head ranging from 66.2 to 36.8 ft with the 70,400 and 660,000 cfs
riverflows, respectively (Plates 18 - 23) and surges in velocities were recorded
with head differentials ranging from 66.2 to 56.6 ft with the 70,400 and
200,400 cfs riverflows, respectively (Plates 24 - 26). These data show that a
maximum change in water-surface elevation of approximately 1.5 ft occurred
with the maximum head of 70.2 ft. An initial surge of positive 0.8 ft occurred
approximately 4 min after the start of lock emptying and a return surge of about
-0.7 ft occurred approximately 10 min after start of emptying when the emptying
cycle was completed. The largest surge occurred near the lock at sta 3 and
decreased in magnitude as the stations approached the river channel. As the
riverflow increased, the magnitude of the surges in water-surface elevations
decreased due to a decrease in head and increased depth in the lock canal.
Emptying the lock created maximum velocities at sta 3 and 4A that varied from
+3.8 fps to -0.8 fps with the 70,400-cfs riverflow and a head of 70.2 ft. The
maximum positive velocity occurred about 8 min after start of lock filling and
the negative velocity occurred about 5 min later. A change in velocities was still
occurring about 25 min after start of lock emptying. As the riverflow increased,
the magnitude of the surges in the velocity decreased due to a decrease in head
and increase in water depth in the canal.

Experiments with Plans A through A-3

Description

These experiments were conducted to develop a system of submerged dikes
to improve the alignment of the currents approaching the new lock and to reduce
the outdraft near the upstream end of the new guard wall. Plan A was the same
as the original design except a system of six submerged dikes was added
upstream of the new lock. The dikes were placed in the deep part of the naviga-
tion channel along the left descending bank. The dikes were spaced about 300 ft
apart with the first dike being placed at sta 8+23.62. Positions, alignments, and
elevations of the dikes are shown in Figure 11.

Plan A-1 was the same as Plan A, except: submerged Dike 1-A was added in

the navigation channel approaching the new lock about 300 ft downstream of
Dike 1 with top el 45.0, and the top elevation of submerged Dikes 1, 2, and 3
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was raised from el 30 to el 45.0, 40.0, and 35.0, respectively. Positions and
alignments of the dikes are shown in Figure 12.

Plan A-2 (Figure 13) was the same as Plan A-1 except four submerged dikes
spaced 300 ft apart with top el of 40.0 were placed in the channel upstream of
Eagle Point along the left bank. Positions and alignments of the dikes are shown
in Figure 13.

Plan A-3 (Figure 14) was the same as Plan A-1 except three spur dikes were
added along the left descending bank immediately upstream of Eagle Point. The
dikes were constructed with side slopes of 1V on 2.5 H and a top el of 76.0.
Positions and alignments of the dikes are shown in Figure 14.

Results of experiments with Plans A through A-3

Water-surface elevations. Water-surface elevations obtained with Plans A
through A-3 are shown in Table 3. These data show the slope in water-surface
elevations increases through the first powerhouse channel compared to the
original design. At Gauge 5, in the immediate forebay of the first powerhouse,
the decrease in water-surface elevations varied from about 0.4 ft with Plan A to
about 0.9 ft with Plan A-3. This can be attributed to reducing the channel area
by adding the submerged dikes. Slopes of the water-surface elevations down-
stream of the dam were generally the same as with the original design.

Current directions and velocities. Current directions and velocities
obtained with Plan A are shown in Plate 27. These data show the submerged
dikes improved the alignment of the current approaching the new lock. How-
ever, the velocity of the currents increases about 1.0 fps compared to the original
design. The dikes increased the flow along Bradford Island and the size and
intensity of the eddy upstream of the powerhouse decreased considerably. The
velocity and alignment of the currents upstream of Eagle Point were generally
the same as with the original design.

Current directions and velocities obtained with Plan A-1 are shown in
Plate 28. These data show that adding Dike 1-A and raising Dikes 1, 2, and 3
did not significantly influence the currents approaching the new lock compared
to Plan A. However, the currents were better aligned with the guide wall.

Current directions and velocities obtained with Plan A-2 are shown in
Plate 29. These data show that adding the four submerged dikes along the left
bank upstream of Eagle Point improved the alignment of the currents approach-
ing Eagle Point without significantly increasing the velocity of the currents.
Downstream of Eagle Point, the currents were generally the same as with
Plans A and A-1.

Current directions and velocities obtained with Plan A-3 are shown in
Plate 30. These data show that adding four spur dikes along the left bank
immediately upstream of Eagle Point eliminated the eddy along the left bank and
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improved the alignment of the currents approaching Eagle Point without
increasing the velocity of the currents. The currents were generally the same
downstream of Eagle Point as with Plans A, A-1, and A-2.

Navigation conditions. With Plan A, navigation conditions were improved
slightly for tows entering and leaving the new lock. However, navigation con-
ditions in the vicinity of Eagle Point were the same as with the original design.
Navigation conditions with Plan A-1 were generally the same as with Plan A.
With Plan A-2, the submerged dikes installed upstream of Eagle Point improved
navigation conditions for downbound tows approaching Eagle Point but the tow
would have difficulties making the “S” turn into the first powerhouse channel
and aligning with the new lock. Navigation experiments indicated that an
upbound tow would have some difficulties turning out of the first powerhouse
channel and moving upstream over the submerged dikes. An upbound tow
moving over the dikes near their river end would have difficulties maintaining
control and making the turn. With Plan A-3, the spur dikes improved navigation
conditions for tows navigating past Eagle Point. Downbound tows could move
close along the river ends of the dikes, approach Eagle Point with good align-
ment and make the turn into the first powerhouse channel with a minimum of
maneuvering. However, the tow had difficulties recovering from the turn and
aligning with the new lock. There was a tendency for the tow to either strike the
left bank or overcompensate and miss the lock approach. Navigation conditions
for tows leaving the first powerhouse channel were improved somewhat. If the
tow held the head of the tow in close to Eagle Point, it could turn into the main
river channel and move upstream along the river ends of the spur dikes without
major difficulties. However, if the tow navigated along the center of the chan-
nel, it would have some difficulties making the turn into the main river channel.

Experiments with Plans B through B-2

Series B experiments were an effort to improve the alignment of the currents
and navigation conditions for tows turning into the channel between Eagle Point
and Bradford Island. Several combinations of dikes and Eagle Point excavations
were evaluated with the 335,000-cfs riverflow.

Description

Plan B (Figure 15) was the same as Plan A-1, except Eagle Point was
excavated landward about 100 ft at el 40.0 with a 1V on 1H bank slope. The
coordinates of the excavation are shown on Figure 15.

Plan B-1 (Figure 16) was the same as Plan B except four submerged spur
dikes with top el 40.0 were placed along the left bank immediately upstream of
Eagle Point (same as Plan A-2 submerged dikes). The dikes were angled
downstream and spaced about 300 ft apart. Positions and alignments of the dikes
are shown in Figure 16.
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Plan B-2 (Figure 17) was the same as Plan B except three spur dikes with top
el 78.0 were added upstream of Eagle Point (same as Plan A-3 spur dikes). The
dikes were normal to the flow and spaced about 300 ft apart. Positions and
alignments of the dikes are shown in Figure 17.

Results of experiments with Plans B through B-2

Water-surface elevations. Water-surface elevations obtained with Plans B
through B-2 are shown in Table 4. These data show that the slope in water-
surface elevation through the first powerhouse channel was generally the same
as with the Plan A series experiments.

Current directions and velocities. Current directions and velocities
obtained with Plans B through B-2 are shown in Plates 31 - 33. These data show
that with Plan B (Plate 31) there was a slight difference in the alignment and
velocity of the current in the vicinity of Eagle Point. However, the currents in
the first powerhouse channel from Eagle Point to the new lock were generally
the same as with Plan A or when compared to the original design, the velocities
of the currents were about 1.0 fps greater in the vicinity of the approach of the
new lock. '

Current directions and velocities obtained with Plan B-1 are shown in
Plate 32. These data show that adding the submerged dikes upstream of Eagle
Point created unstable currents in the area with the floats moving both landward
and riverward of the dikes. Velocities of the currents were generally the same as
with Plan B.

Current directions and velocities obtained with Plan B-2 are shown in
Plate 33. These data show that adding the spur dikes upstream of Eagle Point
improved the alignment of the currents through the reach without increasing the
velocity of the currents.

Navigation conditions. Navigation conditions with Plan B for tows entering
and leaving the immediate forebay of the new lock were generally the same as
with Plan A series experiments. However, excavation of Eagle Point improved
navigation conditions slightly by allowing a downbound tow to approach Eagle
Point 200 to 300 ft riverward and then steer the head of the tow closer to the
point, thereby reducing the maneuvering required for the tow to turn into the first
powerhouse channel. There was still a tendency for a downbound tow moving
close along the left bank to be pulled landward of Eagle Point by the eddy that
forms along the left bank upstream of Eagle Point. The tow was then required to
drive riverward around Eagle Point increasing the degree of turn into the first
powerhouse channel.

With Plan B-1, upbound and downbound tows had difficulties maintaining

course over the submerged dikes. There was a tendency for the tow to be moved
either toward the bank or riverward of the dike ends.

Chapter 3 Experiments and Results
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Plan B-2 improved navigation conditions for tows moving past Eagle Point.
Downbound tows could drive along the river end of the spur dike, drive the head
of the tow close to the Eagle Point excavation, and make the turn into the first
powerhouse channel with a minimum of maneuvering. The tow did have some
difficulty completing the “S” turn and aligning with the new lock. There was a
tendency for the tow to either strike the left bank or overcompensate and
navigate over the ends of the submerged dikes, which in turn would move the
tow out of alignment with the new lock. Upbound tows could navigate the reach
from the upstream end of the first powerhouse channel past the Eagle Point
excavation and the spur dikes without any major difficulties.

Experiments with Plans C through C-9

The Plan C series were preliminary experiments to improve the alignment of
the currents and navigation conditions for tows turning into the channel between
Eagle Point and Bradford Island and entering and leaving the new lock. Several
combinations of dikes, Eagle Point excavations, and Bradford Island excavations
were evaluated with the 335,000-cfs riverflow.

Description

The Plan C experiments are shown in Figures 18 - 27. The principal features
shared by all plans are as follows: a new lock with its guide and guard walls the
same as the original design and a system of seven submerged dikes in the deep
part of the navigation channel approaching the new lock (same as Plan A-1).
The submerged dikes were spaced about 300 ft apart, with Dike 1 placed at
sta 8+23.62. Dikes 2 - 5 were placed upstream of Dike 1 and Dike 1-A was
placed downstream of Dike 1. The crests of the dikes were at elevations 45, 45,
40, 35, 30, 30, and 30 for Dikes 1-A, 1,2, 3, 4, 5, and 6, respectively. Locations,
alignments, and elevations of the submerged dikes are shown in the coordinate
table in Figure 18. Characteristics of the Plan C experiments are as follows:

Plan C (Figure 18) was the same as A-3, except the left descending bank of
Bradford Island was excavated landward about 350 ft at el 30.0. The
coordinates of the excavation are shown in Figure 18.

Plan C-1 (Figure 19) was the same as Plan C, except Eagle Point was
excavated landward about 100 ft at el 40.0 (same as B-2). The coordinates
of the Eagle Point excavation are shown in Figure 19.

Plan C-2 (Figure 20) was the same as Plan C-1, except the Eagle Point
excavation was increased to about 150 ft at el 40.0 and the alignment of the
excavation was changed slightly. The coordinates of the revised Eagle Point
excavation are shown in Figure 20.

Plan C-3 (Figure 21) was the same as Plan C, except the Bradford Island left
bank excavation was increased by excavating landward about 350 ft at
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el 30.0. The coordinates of the revised Bradford Island excavation are shown
in Figure 21.

Plan C-4 (Figure 22) was the same as Plan C-3, except Eagle Point was
excavated landward about 150 ft at el 40.0. The coordinates of the Eagle
Point excavation are shown in Figure 22 and were the same as Plan C-2.

Plan C-5 (Figure 23) was the same as Plan C-4, except Eagle Point excava-
tion was reshaped to better align with the river ends of the spur dikes. The
coordinates of the realigned excavation are shown in Figure 23.

Plan C-6 (Figure 24) was the same as Plan C-5, except the three spur dikes
upstream of Eagle Point were removed and the Eagle Point excavation was
increased to about 200 ft at el 40.

Plan C-7 (Figure 25) was the same as Plan C, except the Bradford Island left
bank excavation was increased by extending the excavation around the head
of the island.

Plan C-8 (Figure 26) was the same as Plan C-7, except Eagle Point was
excavated landward about 100 ft at el 40.0 (same as C-1 and B-2).

Plan C-9 (Figure 27) was the same as Plan C, except the Bradford Island
excavation was increased to what was considered the extreme limits at el 30.
The coordinates of the excavation are shown in Figure 27.

Results of experiments with Plans C through C-9

Water-surface elevations. Water-surface elevations obtained with Plans C
through C-2 are shown in Table 5. These data show the slope in water-surface
elevations downstream of the dam was generally the same with all plans.
However, the slope in water-surface elevations through the first powerhouse
channel varied somewhat depending on the excavation schemes for Eagle Point
and Bradford Island.

Current directions and velocities. Current directions and velocities
obtained with Plans C through C-9 are shown in Plates 34-43. These data show
the spur dikes upstream of Eagle Point improved the alignment of the currents in
the vicinity of Eagle Point and the entrance to the first powerhouse channel
while the Eagle Point excavation had little, if any, effect on the alignment of the
currents in this area. The excavation of Bradford Island shown in Plans C-3
through C-6 reduced the velocity of the currents approaching the new lock about
1.0 fps and reduced the outdraft near the upstream end of the guard wall.
However, there was little effect on the angle of the currents approaching the
guard wall. Excavation of the upstream end of Bradford Island, as shown in
Plans C-7 and C-8, only influenced the currents in the immediate vicinity of the
excavation. Measurements made with Plan C-9 (Plate 43) show a large
clockwise eddy formed near the upstream end of Bradford Island and along the
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left bank of the island near the powerhouse. This is an indication that the
excavation was oversized.

Navigation conditions. Navigation experiments indicated that a combina-
tion of spur dikes upstream of Eagle Point, excavation of Eagle Point, and
excavation of Bradford Island would improve navigation conditions for tows
entering and leaving the new lock. Plan C- 5 appeared to provide the best
overall navigation conditions for tows entering and leaving the new lock.
Downbound tows could drive along the river end of the spur dikes, drive the
head of the tow close to Eagle Point, complete the “S” turn and align with the
new lock without any major difficulties. The tow could start reducing speed
about one to two tow lengths upstream of the guard wall and approach the wall
at a safe speed. Upbound tows could maneuver the head of the tow away from
the guard wall, align with the landside guide wall and drive upstream along the
left descending bank. However, considerable time and power were required for
the tow to maneuver the head of the tow away from the guard wall.

Experiments with Plan D

Plan C-5 was selected as the plan that provided the best overall performance
within the guidelines for excavation of Eagle Point provided by the Portland
District. Therefore, Plan C-5 is designated Plan D for full documentation
purposes.

Description

Plan D (Figure 28) is the same as preliminary experiment Plan C-5 and is the
same as the original design, except:

a. A system of seven submerged dikes in the deep part of the navigation
channel approaching the new lock. The submerged dikes were spaced
about 300 ft apart with Dike 1 placed at sta 8+23.62. Dikes 2 - 6 were
placed upstream of Dike 1 and Dike 1-A was placed downstream of
Dike 1. The crests of the dikes were at elevations 45, 45, 40, 35, 30, 30,
and 30 for Dikes 1-A, 1, 2, 3,4, 5, and 6, respectively. Locations,
alignments, and elevations of the submerged dikes are shown in the
coordinate table in Figure 28.

b. Three spur dikes were added along the left descending bank immediately
upstream of Eagle Point. The dikes were constructed with side slopes of
1V on 2.5 H and a top elevation of 76.0. The position and alignment of
the dikes are shown in the coordinate table in Figure 28.

¢. Eagle Point was excavated landward about 100 ft at el 40.0 and aligned
with the river ends of the spur dikes. The coordinates of the Eagle Point

excavation are shown in Figure 28.

d. Bradford Island was excavated landward about 350 ft at el 30.0.
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Results of experiments with Plan D

Current directions and velocities. Current directions and velocities
obtained with Plan D are shown in Plates 44-49. These data show the currents
are generally parallel with the left bank with maximum velocities that would
affect a tow in the upstream lock approach varying from about 0.8 to 6.4 fps near
Eagle Point and about 0.9 to 6.3 fps near the upper end of the guide wall for
flows ranging from 70,400 to 660,000 cfs. Velocities near the end of the guide
wall were highest at 335,000 cfs and decreased somewhat with the higher flows.
The submerged dikes in the approach to the lock, along with the excavation of
Bradford Island, improved the current alignment into the lock approach, reduced
the outdraft near the upper end of the guard wall, and made some reduction in
the concentration of flow along the left bank upstream of the lock. The spur
dikes reduced the size of the large eddy along the left bank just upstream of
Eagle Point and improved flow conditions approaching Eagle Point, particularly
during the higher flows.

Current directions and velocities measured with the magnetic velocity meter
are shown in Plates 50 - 55. Measurements were made near the water surface, at
mid-depth in the water column, and near the bottom of the channel. These
measurements were made along the navigation channel where modifications
were made so a comparison could be made to base conditions. These data show
some difference in the direction and velocity of the currents compared to the
float velocities and differences between measurements made at different depths
through the water column.

Navigation conditions. Navigation conditions in the upstream approach to
the new lock were improved considerably compared to conditions with the
original design. Satisfactory and safe navigation conditions were obtained with
all flows evaluated up to 485,000 cfs, provided downbound tows exercised
caution in approaching Eagle Point. A downbound tow properly aligned with the
currents passing within 300 ft of Eagle Point can make the left turn downstream
of the Point and approach the lock without difficulty with flows up to
335,000 cfs. With river discharges between 335,000 and 485,000 cfs flows, the
distance riverward of Eagle Point from which a downbound tow could safely
approach the lock was reduced to about 200 ft or less depending on the angle of
the tow with respect to the current alignment approaching Eagle Point. To
ensure safe navigation conditions, a downbound tow should move as near to the
ends of the spur dikes and Eagle Point as practicable. The greater the distance
between Eagle Point and a downbound tow, the greater the angle of turn to the
left a tow would have to make just downstream of the Point in order to properly
approach the lock. The larger the angle of turn the tow has to make, the greater
the exposure of the tow to crosscurrents and the greater the tendency for the tow
to be rotated counterclockwise and miss the approach. Due to the relatively
short distance between Eagle Point and the lock, it is important for a downbound
tow to become properly aligned with the currents and to be close to the left bank
as far upstream as possible to safely approach the lock. A tow properly aligned
could make the turn, start reducing speed about one to two tow lengths upstream
of the guard wall, and approach the wall at a safe speed. However, a tow

Chapter 3 Experiments and Results




misaligned or too far from the left bank would be in danger of colliding with the
guard wall or missing the lock and going into the powerhouse. Due to the
general bed configuration and the division of flow in the area approaching Eagle
Point, flow conditions were very erratic with the 660,000-cfs flow. This resulted
in unstable navigation conditions which would make it hazardous for
downbound tows to attempt to approach the lock at this discharge. Upbound
tows could maneuver the head of the tow away from the guard wall, align with
the landside guide wall and drive upstream along the left descending bank with
all flows evaluated provided they passed within 200 ft of Eagle Point at the
660,000-cfs flow. However, considerable time and power were required for the
tow to maneuver the head of the tow away from the guard wall.

Experiments with Plan D-1

Description
Plan D-1 (Figure 29) was the same as Plan D, except:
a. Three spur dikes upstream of Eagle Point were removed.

b. Excavation of Eagle Point was increased to about 180 ft at el 40.0.

Results of experiments with Plan D-1

Current directions and velocities. Current directions and velocities
obtained with Plan D-1 are shown in Plates 56 - 61. These data indicate no
significant changes in the maximum velocities. which could affect navigation in
the upstream approach to the lock compared to those obtained with Plan D.
However, there was considerable improvement in the current alignment for flows
above 200,000 cfs. These currents were generally straight from upstream of
Eagle Point to some distance downstream of the Point. The maximum velocities
which could affect the movement of a tow approaching the lock ranged from
about 0.8 to 6.8 fps near Eagle Point and 0.8 to 5.0 fps near the upper end of the
guide wall with flows from 70,400 to 660,000 cfs. Velocities near the end of the
guide wall were highest at 335,000 cfs and decreased somewhat with the higher
flows. The additional cut on Eagle Point with this plan further reduced the size
of the eddy above the Point.

Navigation conditions. Straightening the currents in the vicinity of Eagle
Point produced navigation conditions which were considerably better than
results obtained with Plan D. Downbound tows properly aligned upstream of
Eagle Point could drift into the lock with the lower flows and could approach the
lock with all flows evaluated without difficulty. However, the unstable flow
conditions with the 660,000-cfs flow upstream of Eagle Point were not
completely eliminated and could still adversely affect a tow moving downstream
300 ft or further from the left bank when approaching Eagle Point. Upbound
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tows with sufficient power to maintain headway and steerage could maneuver
the head of the tow away from the guard wall, align with the landside guide wall
and drive upstream along the left descending bank without any major difficulty
with all flows evaluated. However, considerable time and power were required
for the tow to maneuver the head of the tow away from the guard wall.

Experiments with Plan D-2

Description
Plan D-2 (Figure 30) was the same as Plan D-1, except :
a. Spur Dike 11, upstream of Eagle Point, was removed.

b. The floating guard wall was extended upstream about 100 ft and a
50-ft-diam guard cell was placed at the upstream end of the wall.

c. The berm along the landside guide/retaining wall was raised to el 51.0.

d. A berm with top el 30 was added around the guard wall cell at the
upstream end of the wall.

e. The upstream guide/retaining wall was shortened to sta 10+29 and the
upstream end was angled toward the bank to provide a smooth
transition into the bank.

Results of experiments with Plan D-2

Current directions and velocities. Current directions and velocities
measured with Plan D-2 are shown in Plates 63 - 67. These data show the
current direction and velocities were generally the same as with Plan D.
Removing spur Dike 11 had little or no effect on the currents in the vicinity of
Eagle Point. The extended guard wall tended to intercept more flow and raising
the berm along the guide wall to el 51.0 appeared to reduce the angle at which
the current approached the guard wall. Current velocities were generally the
same.

Navigation conditions. Navigation conditions were generally the same as
with Plan D except downbound tows approaching Eagle Point could start the
turn into the first powerhouse channel farther upstream and drive the head of the
tow closer to Eagle Point without Dike 11 in place. This improved navigation
conditions at Eagle Point slightly. Extending the guard wall provided tows more

protection from the currents moving across the approach toward the powerhouse.

Downbound tows could land on the guard wall at a safe speed without any major
difficulties. The tow could start reducing speed about one to two tow lengths
upstream of the guard wall and approach the wall at a safe speed. Due to the
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longer guard wall, upbound tows could maneuver the head of the tow away from
the guard wall with less effort. However, considerable time and power were still
required for the tow to maneuver the head of the tow away from the guard wall.

Experiments with Plan E

Portland District requested experiments to determine if and at what elevation
spoil from the excavation for the new lock could be placed in the submerged
dike field upstream of the lock. Preliminary experiments were conducted with
various elevations of fill between the dikes and various elevations of dikes.
These preliminary experiments showed that changing the elevations of the dikes
in the dike field would adversely affect navigation conditions. These experi-
ments also showed that spoil could be placed between the dikes up to el 20
without adversely affecting navigation conditions.

Description
Plan E (Figure 31) is the same as Plan D-2, except:

a. Fill to el 20 was placed between submerged Dikes 1-A, 1, 2, 3, 4, 5,
and 6.

b. Fill was placed in the lock forebay to el 43.0 (10 ft below the bottom of
the floating guard wall at normal pool el 74.0).

c¢. The upstream 200 ft of the floating guard wall was closed to simulate a
solid wall.

Results of experiments with Plan E

Current directions and velocities. Current directions and velocities
obtained with Plan E are shown in Plates 68 - 73. These data indicate the current
pattern was generally the same as with Plan D-2. The currents are generally
parallel to the left bank, with maximum velocities that would affect a tow in the
upstream lock approach varying from about 1.2 to 6.4 fps near Eagle Point and
about 0.8 to 4.6 fps near the upper end of the guide wall for flows ranging from
70,400 to 660,000 cfs. These data indicate that placing the fill between the
submerged dikes improved the alignment of the current slightly in the immediate
lock approach. The currents were better aligned with the guard wall compared to
Plan D-2 and the currents tended to impact the guard wall closer to the lock
chamber.

Navigation conditions. Navigation conditions were generally the same for

tows entering and leaving the new lock as with Plan D-2, except for downbound
tows approaching the guard wall. Experiments indicated downbound tows could
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approach the guard wall with a slightly lower angle of approach and land on the
wall closer to the lock chamber than with Plan D-2.

Experiments with Plan F

Description

Plan F (Figures 32 and 33 and Photos 5 and 6) was similar to Plan D and was
the same as existing conditions, except for the following major changes or
components:

a.

b.

The upstream landward wall of the existing lock was removed.

An 86-ft-wide by 675-ft-long replacement lock was located landward of
the existing lock.

An 810-ft-long floating guard wall drafting 30 ft with 18-ft-wide by 5-ft-
deep fish ports (Figure 33).

A 64-ft by 83-ft clover-leaf cell at the upstream end of the guard wall.

A landward retaining wall, with a 50-ft-wide berm at el 51, extending
about 1,100 ft upstream from the lock and angled about 12 deg landward.

The lock forebay at el 34, except in the vicinity of the lock filling ports.

A 250-ft bottom width lock canal at el -17 with 1V on 2.5H side slopes;
the right descending canal bank was excavated on a 296-ft radius
beginning at sta 48+00 to provide a wider entrance to the canal (see
Photo 6).

A 50-ft-diam protection cell was placed along the left bank of the canal
near the river channel.

A fill with top el 81.0 was placed along the left bank upstream of Eagle
Point. A berm located near the upstream end of the fill with top el 51.0
allowed tows to use the existing mooring dolphins. The fill was
designated Goose Island (see Photo 5).

Eagle Point was excavated landward about 90 ft at el 40.0.

Bradford Island was excavated landward about 350 ft at el 30.0.

A system of seven submerged dikes in the deep part of the navigation
channel approaching the new lock. The submerged dikes were spaced

about 300 ft apart with Dike 1 placed at sta 8+23.62. Dikes 2 - 6 were
placed upstream of Dike 1 and Dike 1-A was placed downstream of
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Dike 1. The crests of the dikes were at el 45, 45, 40, 35, 30, 30, and 30 for
Dikes 1-A, 1,2, 3, 4, 5, and 6, respectively.

m. A fill with top elevation of 20.0 was placed between the submerged dikes
1-A,1,2,3,4,5, and 6.

n. A fill with top elevation 90.0 was placed along the left bank immediately
upstream of the new retaining wall to provide additional area for new
railroad tracks.

Results of experiments with Plan F

Water-surface elevations. Water-surface elevations obtained with Plan F
are shown in Table 6. These data show the slope in water-surface elevations was
generally the same as with the original design.

Current directions and velocities. Current direction and velocity data
shown in Plates 74 - 81 and confetti shown in Photo 7 indicate the current
generally parallels the left bank with a separation of flow occurring near the
riverward ends of the submerged dikes. The currents approach the floating
guard wall at a maximum angle of about 20 deg. The maximum velocities that
would affect a tow approaching the lock varied from about 0.9 to 6.4 near Goose
Island and Eagle Point and about 0.5 to 5.0 near the upper end of the guide wall
for riverflows ranging from 70,400 to 660,000 cfs. The submerged dikes in the
approach to the lock, along with the excavation of Bradford Island and Eagle
Point, improved the alignment of the current in the new lock approach, reduced
the outdraft near the upper end of the guard wall, and somewhat reduced the
concentration of flow along the left bank upstream of the lock as compared to the
original design. Goose Island reduced the size and intensity of the large eddy
along the left bank immediately upstream of Eagle Point and improved flow
conditions approaching Eagle Point, particularly during the higher riverflows.
The currents near the downstream end of the lower lock canal generally align
parallel to the left bank of the river channel; however, due to the alignment of
the lower lock canal, the currents move past the entrance to the canal at an angle
(Photo 8). A large low-velocity eddy formed in the canal entrance with all flows
tested. With the 142,400-cfs flow, when the first powerhouse was discharging
140,000 cfs, the eddy extended into the river channel and upstream along the
bank. The maximum velocity of the currents affecting a tow entering or leaving
the canal varied from about 3.2 to 10.6 fps near the entrance of the canal and
about 3.8 to 14.2 fps near Tanner Creek with riverflows ranging from 70,400 to
660,000 cfs.

Navigation conditions. Navigation conditions in the upstream approach to
the new lock were improved considerably compared to conditions with the
original design. Satisfactory and safe navigation conditions were obtained with
all riverflows tested up to 485,000 cfs, provided downbound tows exercise
caution in approaching Eagle Point and the submerged dikes. A downbound tow
properly aligned with the currents passing within 300 ft of Eagle Point can make
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the left turn downstream of the point and approach the lock without difficulty
with riverflows up to 335,000 cfs (Photo 9). With riverflows between 335,000
and 485,000 cfs, the distance riverward of Eagle Point from which a downbound
tow could safely approach the lock was reduced to about 200 ft or less depending
on the angle of the tow with respect to the current alignment as it approached
Eagle Point. To ensure safe navigation conditions, a downbound tow should
move as near Goose Island and Eagle Point as practicable. The greater the
distance between Eagle Point and a downbound tow, the greater the angle of turn
to the left a tow would have to make just downstream of the Point in order to
properly approach the lock. The larger the angle of turn the tow has to make, the
greater the exposure of the tow to crosscurrents and the greater the tendency for
the tow to be rotated counterclockwise and miss the approach. Due to the
relatively short distance between Eagle Point and the lock, it is important for a
downbound tow to become properly aligned with the currents and to be close to
the left bank and over the submerged dike field as far upstream as possible to
safely approach the lock. A tow misaligned or too far from the left bank would
be in danger of colliding with the guard wall or missing the lock and going into
the powerhouse. Due to the general bed configuration and the division of flow
in the area approaching Eagle Point, flow conditions were very erratic with the
660,000-cfs riverflow. This resulted in unstable navigation conditions which
could make it hazardous for downbound tows to attempt to approach the lock at
this discharge.

Upbound tows with sufficient power to maintain headway and steerage could
leave the lock and move through the reach without any major difficulty with all
flows tested, provided they exercise caution passing Eagle Point with the higher
riverflows (Photo 10). During periods when the first powerhouse is discharging
140,000 cfs, upbound tows should exit the lock forebay along the landward
guide wall and the left descending bank. Tows leaving the forebay along the
floating guard wall would be in danger of being rotated around the upstream end
of the wall. There was some indication that with the higher first powerhouse
discharges, tows may experience some difficulties maneuvering in the lock
forebay to exit along the landward guide wall.

Satisfactory and safe navigation conditions were obtained in the downstream
approach to the new lock with all riverflows tested up to 485,000 cfs, provided
tows exercise caution entering and leaving the downstream lock canal. Down-
bound tows could exit the downstream lock canal without major difficulties with
riverflows up to 335,000 cfs (Photo 11). As the riverflow increased to
335,000 cfs, there was a tendency for the tow to be moved downstream toward
the protection cell along the left bank of the canal as the tow moved into the
river channel. However, tows could move along the right bank of the lock canal
and enter the river channel well upstream of the protection cell. As the riverflow
increased to 660,000 cfs, the tendency for a downbound tow to be moved toward
the protection cell increased and conditions could become hazardous for tows
leaving the lock canal. Navigation conditions for upbound tows approaching the
new lock were satisfactory with riverflows up to 335,000 cfs, provided the tows
exercise some caution maneuvering to enter the lock canal (Photo 12). The right
turn from the river channel, where the currents are parallel to the river channel,
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into the slack water lock canal requires the tow to move upstream of the protec-
tion cell along the left bank of the river channel, reduce speed, and use the cur-
rents to move the head of the tow into the lock canal. The large eddy that
formed along the left bank line of the river channel with the 142,400-cfs river-
flow, could increase the maneuvering required for the tow to enter the canal. As
the riverflow increases to 660,000 cfs, the high velocity of the currents makes
the turn into the lock canal more difficult, resulting in conditions that could be
hazardous for navigation.

Experiments were conducted to evaluate navigation conditions for tows
entering and leaving the lock with barges tied up at the mooring facility and
approaching the moorage. Experiments were also conducted to determine if
barges could be tied up along the right bank between the moorage facility and
the entrance of the canal. The video tracking system was used to record the path,
angle of the tow relative to the centerline of the canal, and the speed of tows
entering and leaving the lock canal. The speed and angle of the tow are reported
for selected stations along the canal as shown in Plate 82. Data shown in Plates
83 - 86 indicate tows could enter and leave the lower lock canal with barges tied
up at the moorage facility without any major difficulties or increased
maneuvering. With a total riverflow of 485,000 cfs, downbound tows were
required to drive toward the right bank of the canal and enter the river channel
along the right bank of the canal to clear the canal and the protection cell along
the left bank of the canal (Plate 87). With the 485,000-cfs total riverflow,
upbound tows were required to drive the head of the tow in close to the right
bank of the canal, allow the current to move the head of the tow into the canal
along the right bank, and drive toward the left bank to align with the lock
(Plate 88). This maneuver could not be safely executed with either the 70,000-
or 485,000-cfs riverflows when barges were moored along the right bank
downstream of the moorage facility (Plates 89 and 90). Upbound tows could
enter the lock canal, approach the moorage facility at a safe speed, and dock with
all riverflows evaluated (Plates 91 - 95).

Point Velocities. Point velocities were measured near the water surface,
at mid-depth, and near the channel bottom with a range of riverflows to
provide detailed velocity data for determining the effects the changes in cur-
rent alignment and velocities and eddies may have on the migration of fish
(Plates 96 - 101).

Lock Emptying Experiments. Experiments were conducted to measure
surges in water-surface elevations and the velocity of the currents in the
downstream lock canal at selected locations (Plate 102). The purpose of the
experiments was to evaluate the effects of lock emptying on a tow tied off and
waiting at the moorage facility immediately downstream of the new lock along
the right bank of the canal. Allowing tows to wait at the moorage facility for a
downbound tow to clear the new lock would decrease the transit time through
the project. Surges were recorded during lock emptying with two heads and with
and without barges being moored at the facility. Data measured during the
experiments are shown in Plates 103 - 114. These data show surges in water-
surface elevations measured without barges at the mooring facility (Plates 103
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and 104) were generally the same as with the original design. These data show
that a maximum change in water-surface elevation of approximately 1.5 ft
occurred with the maximum head of 70.2 ft. An initial surge of positive 0.8 ft
occurred approximately 4 min after the start of lock emptying and a return surge
of about -0.7 ft occurred approximately 10 min after start of emptying when the
emptying cycle was completed. The largest surge occurred near the lock at sta 1
and decreased in magnitude as the stations approached the river channel. As the
riverflow increased, the magnitude of the surges in water-surface elevations
decreased due to a decrease in head and increase in depth of water in the lock
canal. Emptying the lock created maximum velocities at sta 1 that varied from
+1.4 fps to a -0.3 fps with the 70,400-cfs riverflow and a head of 70.2 ft

(Plate 105). The maximum positive velocity occurred about 8 min after start of
lock filling and the negative velocity occurred about 10 min later. As the river-
flow increased, the magnitude of the surges in the velocity decreased due to a
decrease in head and increase in water depth in the canal (Plate 106). Measure-
ments made with barges at the mooring facility are shown in Plates 107 - 114.
These data indicate that with barges moored at the facility, the surges in water-
surface elevation were baffled somewhat, but the surge in the velocity of the
current was generally the same as those measured without barges at the facility.
With barges at the facility, a maximum surge in water-surface elevation of
approximately 1.1 ft occurred with the maximum head (70.2 ft). An initial surge
of +0.7 ft occurred approximately 4 min after the start of lock emptying and a
return surge of about -0.4 ft occurred approximately 8 min after start of empty-
ing. The largest surge occurred near the lock at sta 1 and decreased in magnitude
as the stations approached the river channel. The position of the barges at the
facility (located at the upstream end or at the downstream end of the facility) has
some influence on the surges in water-surface elevations and velocities of the
current.

Experiments with Plan F-1

Preliminary experiments were conducted with various designs of guard wall
to select a design that would enhance the migration of fish through the project
without adversely affecting navigation. The Portland District, along with various
state and Federal agencies, was involved in the evaluation and selection of the
guard wall. Model demonstrations were conducted and dye and confetti were
injected in the model to provide information for the agencies to select a guard
wall that would provide the best conditions both for the migration of fish and
navigation conditions for tows using the project. There were also preliminary
experiments with the model tow simulating the design size tow to determine the
effects of the currents on tows entering and leaving the new lock. Construction
and required strength of the wall were also carefully considered during the
evaluations. After careful evaluation, a combination fixed/floating guard wall
was selected for full evaluation and documentation.

Chapter 3 Experiments and Results

61




62

Description

Plan F-1 (Figures 34 and 35) was the same as Plan F except the guard wall of
the new lock was modified to an 830-ft-long combination fixed/floating guard
wall. The upstream 252 ft of the guard wall was attached to four 52.3-ft-diam
cells to provide a rubbing surface for a tow using the wall. A 144-ft-long wall
section adjacent to the lock was fixed and spanned from the lock wall to a
52.3-ft-diam cell at sta 18+65. A floating wall design was used for the
432-ft-long mid section and was anchored between two 52.3-ft-diam cells at
sta 18+65 and 14+10. The fixed part of the wall was 28 ft wide and 13 ft deep
with a top elevation of 81.0. The bottom of the fixed walls was at el 68.0. The
tloating part of the guard wall was 40 ft wide and 26 ft deep and floated with the
bottom of the wall 22 ft below the water surface. A skirt with vertical slots was
suspended from the fixed part of the guard wall between sta 14+10 and 12+50
and from the floating section of the guard wall. The bottom of the skirt attached
to the fixed part of the wall was at el 52.0 and the bottom of the skirt attached to
the floating part of the wall was 37 ft below the top of the wall or 33 ft below the
water surface. The vertical slots were 1 ft wide and extended from the bottom of
the wall to the bottom of the skirts. The vertical slots were spaced 6 ft center to
center.

Results of experiments with Plan F-1

Current directions and velocities. Current directions and velocities taken
in the immediate vicinity of the new guard wall are shown in Plates 115 - 117,
The measurements were made with a total riverflow of 335 ,000 cfs and with the
first powerhouse discharging 140,000 cfs. The measurements were made with
the upper pool at el 71.5 ft (minimum pool elevation), el 74.0 ft (normal pool
elevation), and el 77.0 ft (maximum pool elevation). These data indicate there
was no significant change in the direction or velocity of the currents in the
vicinity of the guard wall that would adversely affect tows.

Point velocities. Point velocities were measured near the water surface, at
mid-depth, and near the channel bottom with the 335,000-cfs total riverflow and
a powerhouse discharge of 140,000 cfs to evaluate the effects of the wall on the
migration of fish (Plates 118 - 126). The measurements were made with the
upper pool at el 71.5 ft (minimum pool elevation), el 74.0 ft (normal pool eleva-
tion), and el 77.0 ft (maximum pool elevation). These data provided detailed
information to the various agencies for an evaluation of the performance of the
guard wall from an environmental standpoint.

Guard wall impact experiments. Experiments were conducted to measure
the speed and angle of tows landing on the guard wall both during a normal
approach and a loss of power approach. This information was provided to
Portland District so the floating guard wall could be designed to withstand
normal impacts of tows using the project and for estimating the extent of the
damage if a tow were to lose power during its approach to the new lock. These
measurements were made using the video tracking system to obtain the angle and
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speed of the tow as it landed on the guard wall, either during a normal approach
or a loss of power event. Measurements were made during normal approaches
(no loss of power) and with a simulated loss of power at five locations in the
channel. A loss of power was simulated by cutting all power to the tow and
setting the rudders to the center positions when the head of tow was at the
selected point. A loss of power was simulated when the head of the tow was at
Dike 1-A, Dike 1, Dike 2, Dike 3, and Dike 4. The model simulated a
335,000-cfs total riverflow and 140,000-cfs first powerhouse discharge with the
upper pool at el 71.5 ft (minimum pool elevation) and el 74.0 ft (normal pool
elevation). Representative runs for each of the experiments are shown in

Plates 127 - 132 and the results from all tow runs are tabulated in Tables 7 - 18.
Data recorded with upper pool el 74.0 (normal pool elevation) indicate the angle
of approach for a downbound tow under control (no loss of power) would vary
from less than 0.1 to 3.8 deg and its speed would vary from about 1.6 - to 2.3 fps
and would land on the wall near the lock in the vicinity of sta 20+00

(Tables 7 - 18). There was a large spread in the angle and velocity of impact that
could occur when the tow experienced a loss of power depending on its location
when it lost power. Generally the largest angles and speed of impact on the
guard wall occurred when the tow lost power at submerged Dike 4, which is the
farthest upstream point for loss of power in these experiments. The maximum
angle of impact was 22.2 deg and the maximum speed of impact was 6.4 fps
(Table 12). This can be attributed to the normal operation of a tow as it
approaches the lock. A downbound tow starts reducing speed and aligning with
the wall about two tow lengths upstream of the guard wall or about 1,300 ft
upstream of the guard wall. Therefore, a tow would still be driving or just
starting a flanking maneuver to reduce speed in the vicinity of submerged

Dike 4. Impacts recorded with the upper pool at el 71.5 ft (minimum pool
elevation) are shown in Tables 13 - 18. These data indicate that the angles and
speeds of impact are slightly less than those with the el 74.0 ft pool.

Guard wall construction experiments. Experiments were conducted to
demonstrate and evaluate navigation conditions during construction of the new
guard wall. During the construction period, tows will continue to use the exist-
ing lock to transit the project. The fixed part of the new wall would be con-
structed in the wet and would be partially in the navigation channel approaching
the existing lock. The floating part of the new guard wall will be constructed
offsite and floated into place after completion of the new lock. These experi-
ments were designed to provide some guidance for the destruction of the existing
guide wall, excavation of the approach to the new lock, construction sequence
for the new wall, and when and if some type of assistance should be provided for
tows entering and leaving the existing lock. Preliminary experiments indicated
tows would not be able to enter and leave the existing lock during construction
of the new guard wall if all ten powerhouse units were in operation. Model
experiments indicated that the powerhouse should be either completely shut
down or, at a minimum, the operation should be reduced to two units. Portland
District determined that due to project requirements, the powerhouse would need
to operate at least two units or about 28,000 cfs discharge. Therefore, all con-
struction sequence experiments were conducted with powerhouse units 1 and 10
operating, for a total powerhouse discharge of 28,000 cfs. Navigation conditions
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were evaluated with a 42-ft-wide by 320-ft-long tow (representing a single
42-ft-wide by 220-ft-long barge with a 100-ft-long pusher) and a 42-ft-wide by
500-ft-long tow (representing two 42-ft-wide by 200-ft-long barges with a
100-ft-long pusher). Initial experiments indicated construction of the guard wall
from the upstream end would provide the best navigation conditions for tows
entering and leaving the existing lock for the longest period of time. All experi-
ments were conducted with work barges in place as anticipated by the contractor.

Construction Phase 1 was conducted with guard wall cell No. 1 in place.
Work barges were moored along the riverside of the cell for construction of the
cell and along the upstream end of the existing guide wall to start destruction of
the wall (Plates 133 and 134). These experiments indicate tow size should be
limited to one barge and downbound tows could require some assistance moving
between the new guard wall cell and the work barges moored along the guide
wall. Navigation conditions were satisfactory for upbound tows.

Construction Phase 2 was conducted with guard wall cell Nos. 1 and 2 in
place and about 700 ft of the upstream end of the existing guide wall removed.
Work barges were moored along the riverside of Cell Nos. 1 and 2 for construc-
tion of the cells. During this phase of construction work, barges would be
landward of the existing guide wall demolishing the next section of the guide
wall. Navigation conditions were satisfactory for a two-barge-tow entering and
leaving the existing lock (Plates 135 and 136).

Construction Phase 3 was with guard wall cell Nos. 1, 2, 3, and 4 in place
and about 500 ft of the existing guide wall left in place. Work barges were
moored riverward of cell Nos. 2 and 3 and landward of the existing guide wall.
These experiments indicate tow size should be limited to one barge. Navigation
conditions were satisfactory for a one-barge tow entering and leaving the
existing lock (Plates 137 and 138).

Construction Phase 4 was the same as Construction Phase 3 except all work
barges were landward of the guide wall or along the upstream end of the new
guide wall. This restricted the area between the new guard wall cells and the
new lock approach. During this phase, tows were required to approach or leave
the existing lock by maneuvering riverward of the new guard wall cells
(Plates 139 and 140). A downbound tow would be navigating near the river end
of the submerged dikes and trying to turn around the new guard wall cells to
align with the lock chamber. This would require considerable maneuvering and
time or some type of assistance. Navigation conditions for a one-barge tow
leaving the existing lock were satisfactory provided the tow exercised due
caution. However, an assist towboat should be made available on request.

Construction Phase 5 was the same as Construction Phase 4, except the
remainder of the existing guide wall was removed. During this phase of con-
struction work barges may be in the channel between the new guard wall cells
and the new lock approach depending on the area being excavated for the new
lock approach. Plates 141and 142 show a scheme where a limited navigation
channel is available landward of the new guard wall cells. These experiments
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indicate tows should be limited to one barge during this phase of construction.
These data indicate a downbound tow would be required to approach the existing
lock riverward of the new guard wall cells (Plate 141). The tow would require
some type of assistance or considerable maneuvering and time to enter the lock
chamber due to both the maneuvering around the guard wall cells and the
absence of a guide wall to aid in aligning with the lock chamber. An upbound
tow could either use the channel landward of the guard wall cells or maneuver
riverward of the cells (Plate 142). An upbound tow navigating riverward of the
guard wall cells would require some type of assistance or considerable time and
maneuvering to leave the existing lock. With construction Phase 6, when the
channel landward of the guard wall cells was obstructed by work barges, tows
would be required to navigate riverward of the cells (Plates 143 and 144).
During this period, upbound and downbound tows would either require some
assistance or considerable time and maneuvering to enter and leave the existing
lock.
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4 Discussion of Results
and Conclusions

Limitations of Model Results

Analysis of this investigation’s results is based on a study of : (a) the effects
of various plans and modifications on water-surface elevations and current
directions and velocities, and (b) the effects of the resulting currents on model
towboat and tow behavior. In evaluating the results, it should be taken into
consideration that small changes in current directions and velocities are not
necessarily changes produced by a modification in the plan since several floats
introduced at the same point may follow a different path and move at somewhat
different velocities due to pulsating currents and eddies. Current directions and
velocities shown in the plates were obtained with floats submerged to the depth
of a loaded barge (14-ft prototype) and are more indicative of currents affecting
the behavior of tows than those indicated by photographs, which indicate the
movement of confetti on the water surface and could be affected by surface
tension.

The small scale of the model made it difficult to reproduce accurately the
hydraulic characteristics of the prototype structures or to measure water-surface
elevation with an accuracy greater than about 0.1 ft prototype. Also, current
directions and velocities were based on steady riverflows and would be some-
what different with varying riverflows. The model was a fixed-bed type and not
designed to reproduce overall sediment movement that might occur in the proto-
type with the various plans. Therefore, changes in channel configuration result-
ing from scouring and deposition and any resulting changes in current directions
and velocities were not evaluated.

Summary of Results and Conclusions

The following results and conclusions were developed during the
investigation:

a. Satisfactory navigation conditions can be established with the new lock
positioned landward of the existing lock and rotated relative to the center
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line of the existing lock. However, some modifications to the navigation
channel will be required upstream of the lock and the downstream lock
canal.

b. Adding spur dikes along the left descending bank upstream of Eagle Point
will reduce the size of the eddy and improve navigation conditions for
tows navigating the reach.

c¢. Excavation of Eagle Point would further improve navigation conditions
for tows turning into the first powerhouse channel.

d. Adding submerged dikes in the deep part of the channel approaching the
new lock would reduce the outdraft near the upstream end of the new
guide wall but increase the velocities somewhat.

e. Excavation of Bradford Island along with adding submerged dikes in the
deep part of the channel would improve the alignment of the currents and
reduce the velocities. Navigation conditions for tows entering and leaving
the new lock would be improved significantly.

f. Plan D-2 provided satisfactory navigation conditions for tows entering and
leaving the upstream approach of the new lock.

g. Fill could be placed between the submerged dikes to el 20 without
adversely affecting navigation conditions for tows entering and leaving the
new lock (Plan E).

h. The spur dikes along the left bank upstream of Eagle Point could be
replaced with a spoil area without adversely affecting navigation
conditions.

i. Plan F provided satisfactory navigation conditions for tows entering and
leaving the upstream approach of the new lock with an 810-ft-long
floating guard wall. Navigation conditions were satisfactory for tows
entering and leaving the downstream lock approach.

j. The fixed/floating guard wall of Plan F-1 provided satisfactory navigation
conditions for tows entering and leaving the upper lock approach.

k. Navigation can be maintained during construction of the new fixed/
floating guard wall of Plan F-1 and excavation of the approach to the new
lock. However, the powerhouse discharge should be limited to 28,000 cfs
and the size of the tows should be limited to one or two barges depending
on the construction phase.
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Table 1
Existing Conditions

Water-Surface Elevations / Navigation Channel

Discharge in 1,000 Cfs (ft NGVD)

Gauge No. | 70.4 118.4 200.4 335 485 660
1 74.0 74.0 74.0 74.0 74.0 74.0
2 74.0 74.0 73.9 73.9 74.0 74.0
3 74.0 74.0 73.9 73.6 73.7 73.9
4 73.9 74.0 73.8 73.6 73.7 74.1
5 73.9 74.0 73.8 73.7 73.7 74.2
First Powerhouse
6 7.6 11.8 17.5 25.5 32.9 38.8
7! 7.8 12.0 175 249 32.1 38.2
8 7.8 12.0 17.5 24.8 31.9 37.7
9 7.7 11.8 17.2 24.4 31.3 36.8
10 7.4 11.4 16.6 23.7 30.7 36.3
Water-Surface Elevations / Main Channel
2 74.0 74.0 73.9 73.9 74.0 74.0
B5' 74.0 74.0 74.0 74.0 74.0 74.0
Axis of Spillway
B6 7.9 12.2 18.0 25.7 31.9 35.6
B7 7.8 12.1 17.9 25.6 33.1 39.1
8 7.8 12.0 17.5 24.8 31.9 37.7
Slope 1-5 <0.1 <0.1 <0.1 >0.1 0.1 <0.1
(ft/1.2 mi)
Slope 6-10 0.2 0.3 0.4 0.6 0.7 1.0
(ft/2.1 mi)

! Controlled elevations.




Table 2
Original Design

Water-Surface Elevations / Navigation Channel

Discharge in 1,000 cfs (ft NGVD)

Gauge No. | 70.4 118.4 200.4 335 485 660
1 74.0 74.0 74.0 74.0 74.0 74.0
2 74.0 74.0 73.9 73.8 74.0 74.0
3 74.0 74.0 73.9 73.8 73.7 73.9
4 73.9 74.0 73.8 73.8 73.7 741
5 73.9 74.0 73.8 73.9 73.7 74.2

First Powerhouse

6 7.6 11.6 17.5 25.6 32.9 38.7
7 7.8 11.8 17.4 24.9 321 38.1
8 ) 7.8 11.8 17.4 24.9 31.9 37.8
9 7.7 11.7 17.2 24.5 31.3 37.0
10' 7.4 11.3 16.6 23.7 30.7 36.3

Water-Surface Elevations / Main Channel

2 74.0 73.9 73.9 74.0 74.0 74.0
B5' 74.0 74.0 74.0 74.0 74.0 74.0
Axis of Spillway

B6 7.8 12.0 17.8 25.7 31.9 35.7
B7 7.8 12.0 17.8 25.7 33.1 39.1
8 7.7 11.8 17.4 24.9 31.9 37.8
Slope 1-5 < 0.1 <041 < 0.1 <01 0.1 <01
(ft/1.2 mi)

Slope 6-10 0.1 0.1 0.4 0.9 0.7 1.1
(/2.1 mi)

! Controlled elevations.




Table 3
Plans A Through A-3, Discharge 335,000 cfs

Water-Surface Elevations / Navigation Channel

Plans
Gauge No. A A1 A-2 A-3
1 74.0 74.0 74.0 74.0
2 73.7 73.7 737 73.6
3 735 735 735 735
4 73.3 73.1 73.1 73.0
5 73.4 73.2 73.1 73.0
First Powerhouse /Dam
6 25.6 255 25.5 254
7 24.8 24.9 24.9 24.9
8 24.8 24.8 24.9 247
9 24.4 24.4 245 243
10! 23.7 23.7 23.7 23.7
Slope 1-5 0.5 0.7 0.7 0.8
{ft/1.2 mi)
Slope 6-10 0.9 0.9 0.9 0.8
(ft/2.1 mi)

' Controlied elevations - Upper Pool controlled to el 74.0 at Gauge B.




Table 4
Plans B Through B-2, Discharge 335,000 cfs

Water-Surface Elevations / Navigation Channel

Plans
Gauge No. B B-1 B-2
1 74.0 74.0 74.0
2 73.8 73.8 73.7
3 73.6 735 73.6
4 73.2 732 73.1
5 73.3 73.2 73.1
First Powerhouse /Dam
6 25.5 25.4 25.5
7 24.9 24.8 24.8
8 . 24.8 24.8 24.8
9 24.4 24.4 24.4
10 23.7 237 23.7
Slope 1-5 0.6 0.7 0.7
(ft/1.2 mi)
Slope 6-10 0.9 0.8 0.8
(ft/2.1 mi)

' Controlled elevations - Upper Pool controlled to el 74.0 at Gauge B.




Table 5
Plans C Through C-2, Discharge 335,000 cfs

Water-Surface Elevations / Navigation Channel

Plans
Gauge No. C C-1 C-2
1 74.0 74.0 74.0
2 73.8 73.9 73.8
3 73.6 73.7 73.7
4 73.3 73.4 734
5 734 73.4 73.3
First Powerhouse /Dam
6 255 255 25.5
7 25.0 24.9 24.9
8 24.8 24.8 24.8
9 24.4 24.4 24.4
10! 23.7 23.7 23.7
Slope 1-5 0.5 0.5 0.6
{ft/1.2 mi)
Slope 6-10 0.9 0.9 0.9
(ft/2.1 mi)

' Controlled elevations - Upper Pool controlled to el 74.0 at Gauge B.




Table 6

Plan F
Water-Surface Elevations / Navigation Channel
Discharge in 1,000 cfs (ft NGVD)
Gauge No. | 70.4 118.4 200.4 335 485 660
1 74.0 74.0 74.0 74.0 74.0 74.0
2 74.0 74.0 73.9 73.8 74.0 74.0
3 74.0 74.0 73.9 73.8 73.7 73.9
4 73.9 74.0 73.8 73.8 73.7 74.1
5 73.9 74.0 73.8 73.9 73.7 74.2
First Powerhouse
6 7.6 11.6 175 256 32.9 38.7
7 7.8 11.8 17.4 24.9 32.1 38.1
8 7.8 11.8 17.4 24.9 31.9 37.8
9 7.7 11.7 17.2 245 313 37.0
10’ 7.4 11.3 16.6 237 30.7 36.3
Water-Surface Elevations / Main Channel
2 74.0 73.9 73.9 74.0 74.0 74.0
B5' 74.0 74.0 74.0 74.0 74.0 74.0
Axis of Spillway
B6 7.8 12.0 17.8 25.7 31.9 35.7
B7 7.8 12.0 17.8 25.7 33.1 39.1
8 7.7 11.8 17.4 24.9 31.9 37.8
Slope 1-5 <0.1 <01 <01 <01 0.1 < 0.1
(ft/1.2 mi)
Slope 6-10 0.1 0.1 0.4 0.9 0.7 141
(/2.1 mi)

! Controlled elevations.




Table 7
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 74.0

No Loss of Power

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 6.3/-16.0 | 5.2/-10.3 | 3.8/-4.6 3.4/2.9 4.6/3.2 1.8/1.9 20+29
2 7.1/-165 | 7.1/-7.9 6.2/-1.5 5.3/3.6 5.0/5.5 2.2/1.2 20+27
3 7.3/-12.2 | 7.3/-5.36 | 6.2/0.0 4.6/5.5 4.2/6.8 2.3/3.8 16+56
4 6.9/-10.1 | 7.1/-5.2 5.8/-7.0 4.3/1.8 3.6/2.3 1.6/2.0 20+16
5 6.0/-16.1 | 5.2/-10.5 | 3.7/-6.5 3.8/0.3 4.9/1.0 2117 20+08
6 6.5/-6.1 6.9/-2.6 5.7/0.0 4.3/2.3 3.8/3.6 1.4/0.8 20+02
7 6.4/-13.0 | 5.6/-7.7 3.8/-5.2 3.1/-1.0 4.1/0.2 2.0/1.8 20+17
8 6.8/-149 | 7.1/-11.8 | 6.9/-8.6 6.1/-6.2 6.7/-4.6 1.9/1.8 19+97
9 7.7/-26.2 | 7.9/-28.9 | 7.8/-275 | 7.1/-22.9 | 6.9/-21.1 1.9/0.0 20+03
10' 6.4/-5.1 6.6/0.3 5.9/2.4 4.9/5.4 4.8/6.1 1.6/1.0 20+21

!7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.

Table 8
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 74.0

Loss of Power at Dike 1-A

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 5.7/-15.1 | 5.4/-7.0 4.2/0.0 4.2/6.7 4.9/6.1 2.1/-2.7 NO HIT
2 5.7/-149 | 54/-8.2 4.7/-2.1 4.3/-1.1 4.5/1.3 3.8/10.5 17+00
3 7.6/-20.1 | 8.0/-12.2 [ 7.2/-6.7 6.1/-2.8 5.8/-1.1 4.6/7.7 15+89
4 8.3/-30.7 | 8.3/-21.8 |6.8/-16.0 |4.9-11.4 |3.7/65 2.0/-5.6 NO HIT
5 5.7/-149 | 54/-8.2 4.7/-2.1 4.3/-1.1 4.5M1.3 3.8/10.5 16498
6 7.1/-18.4 | 6.8/-12.2 | 6.0/-8.1 5.3/-3.2 4.7/-0.2 1.6/0.2 20+23
7 5.1/-17.7 | 4.0/-12.8 | 3.6/-8.5 4.5/-4.9 4.5/-4.2 0.9/-4.6 19+00
8 7.0/-10.6 | 7.5/-6.3 5.8/-2.0 4.3/2.1 4.3/1.7 1.9/-3.1 20+12
9 7.8/-18.7 | 7.7/-12.8 | 6.0/-9.1 5.0/-7.4 4.6/-4.4 1.8/-07 20+10
10 6.7/-19.0 | 7.0/-9.2 5.5/-2.3 4.6/3.3 4.5/41 0.6/-4.3 18+83

!7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.




Table 9
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 74.0

Loss of Power at Dike 1

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 6.5/-10.6 | 6.0/-6.5 4.9/-1.4 4.3/ 4.7/2.6 4.0/0.0 20+34
2 7.0/-9.8 7.0/-7.4 6.1/-4.4 4.8/ 5.2/0.4 2.4/1.6 20+26
3 6.8/-14.4 | 7.0/-9.3 5.6/-4.2 4.3/ 4.8/-0.9 1.3/-3.5 19+11
4 6.7/-10.3 | 6.1/-6.7 4.5/-21 4.4/ 4.8/3.4 4.2/14.8 15+70
5 7.5/-13.2 |7.0/-7.6 5.5/-2.2 4.8/ 4.9/55 2.7/27 20+28
6 6.8/-16.3 | 6.4/-10.8 | 4.8/-7.3 4.8/ 4.8/-1.6 3.3/9.5 20+21
7 6.7/-9.9 6.2/-5.9 5.1/-3.7 4.8/ 5.5/3.4 5.1/11.2 14+96
8 8.1/-31.2 | 7.6/-25.1 | 6.0/-22.2 | 4.0/ 4.1/-5.2 3.8/6.1 16481
9 6.8/-16.3 | 6.4/-10.9 | 4.8/-7.3 4.6/ 4.8/-1.6 3.3/9.5 20+21
10 6.4/-18.3 | 6.0/-125 | 4.8/-81 4.5/ 4.9/2.3 4.2/3.1 16477

'7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.

Table 10
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 74.0.

Loss of Power at Dike 2

Run- Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 6.6/-16.3 | 6.2/-11.5 |5.0/-4.8 4.7/-0.3 5.2/3.2 4112.7 17+24
2 7.3/-16.3 | 6.1/-10.0 |4.7/-7.0 4.7/-5.9 5.2/-4.8 0.9/-1.1 19+81
3 6.9/-10.7 | 5.9/-6.5 5.0/-3.4 4.7/-0.3 5.2/3.2 4.8/12.3 14453
4 6.7/-11.4 }6.3/-8.0 5.7/-5.3 5.3/-2.1 5.5/1.8 2.5/5.8 20+16
5 7.8/-16.9 | 7.4/-11.7 |6.4/-7.3 5.7/-3.3 6.0/0.7 4.5/10.5 17+80
6 7.2/-12.0 | 7.3/-7.2 6.6/-2.8 6.1/0.5 6.4/2.9 3.1/91 20+25
7 6.4/-14.3 |5.9/-9.3 5.2/-5.9 5.0/-2.3 5.3/0.8 2.4/4.3 20+02
8 7.0/-145 |6.2/-8.9 5.1/-3.4 46/1.4 5.2/4.6 4.4/14.6 16+30
9 7.2/-135 | 5.5/-8.7 4.3/1.5 4.2/5.4 4.5/7.4 4.3/15.5 16+05
10 6.6/-13.0 |5.8/-5.8 5.1/0.3 4.7/6.3 5.2/7.8 4.5/16.3 16+46

'7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.




Table 11
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 74.0.

Loss of Power at Dike 3
Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 7.2/-15.2 | 6.4/91 6.1/-3.4 5.4/2.8 5.7/6.6 5.3/17.9 14+86
2 6.5/-15.3 | 5.9/-6.9 5.711.0 5.2/7.0 5.6/10.2 4.9/7.4 15471
3 6.9/-15.9 16.6/-9.8 6.0/-4.7 5.7/5.0 5.9/4.2 4.8/16.4 16+67
4 5.0/-13.8 | 4.4/-6.9 4.3/-4.3 4.2/0.3 4.6/2.3 1.0/1.2 19+72
5 6.5/-11.1 |6.1/-5.5 5.6/-0.4 5.3/6.2 5.6/8.8 5.0/18.6 15+80
6 5.3/-8.6 5.2/-3.2 4.9/2.7 4.6/8.6 49/M11.2 4.9/18.8 14+90
7 6.3/-156.2 | 6.0/-11.7 |5.8/-7.4 5.3/-4.2 5.6/-1.1 2.3/4.4 19+88
8 5.7/-8.0 5.5/-2.6 5.2/1.0 5.0/5.0 5.3/7.4 2.9/4.8 20+08
9 6.3/-10.3 | 6.1/-6.1 5.8/-2.2 5.2/1.2 5.5/4.2 5.0/6.1 15+75
10

' 7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock

when head of tow is at selected point. Positive angle is rotation toward the guard wall.

Table 12
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 74.0.

Loss of Power at Dike 4
Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 7.2/-8.4 7.0/-1.7 6.5/6.4 6.0/9.1 6.2/8.6 4.4/10.3 18425
2 7.3/-9.3 7.1/-35 6.7/3.5 5.9/10.4 6.0/15.5 5.5/22.2 14415
3 6.2/-10.2 | 6.3/-4.2 6.0/1.8 5.5/6.5 5.7/10.7 5.3/21.9 14+43
4 7.0/-9.1 6.7/-0.5 6.3/7.3 5.6/13.8 5.8/15.7 5.3/21.6 14469
5 7.6/-27.1 7.4/-23.6 |6.8/-22.1 HIT BANK BETWEEN DIKES 1 AND 2
6 7.1/-11.9 | 7.1/-09 6.4/6.8 5.6/13.7 6.0/15.4 5.4 /20.5 14467
7 7.5/-8.0 7.7/-2.2 6.7/3.3 6.2/9.4 6.4/13.0 6.4/16.3 12403
8 6.8/-26.6 |6.6/-229 |4.0/-19.3 |3.8/-11.9 | 4.4/-10.1 3.6/-12.0 14467
9 7.4/-16.4 | 7.4/-10.2 |6.7/-4.2 6.3/-0.3 6.5/2.0 6.0/7.4 15+67
10' 7.4/-185 |7.2/-11.4 |6.5/-5.3 6.2/2.4 6.0/5.2 2.5110.3 20400

17.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock

when head flow is at selected point. Positive angle is rotation toward the guard wall.




Table 13
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 71.5

No Loss of Power

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewal! | Station
1 8.1/-11.5 | 8.1/-3.6 5.0/0.0 4.3/2.0 4.8/2.2 2.3/2.3 20+31
2 7.8/-16.2 | 7.3/-9.5 5.7/-7.5 5.1/-5.2 5.2/-4.1 1.4/-0.4 20+31
3 7.7/-15.8 | 8.5/-9.6 6.8/-5.1 5.9/-3.7 5.7/-2.3 3.6/0.9 15+98
4 7.9/-16.3 | 7.4/-9.4 6.3/-4.6 4.9/1.3 4.4/3.0 1.6/1.3 20+13
5 9.0/-25.3 |9.9/-19.6 |8.3/-123 |7.8/-5.6 7.6/-2.9 5.1/0.6 20+23
6 7.9/-11.9 | 7.3/-6.7 5.5/-2.5 5.0/-0.2 5.9/-0.3 1.3/0.8 20+15
7 8.9/-14.8 | 8.8/-7.7 7.7/-3.0 7.3/2.0 7.2/4.7 3.7/6.4 16412
8 8.6/-23.7 |9.4/-145 |7.2/-85 5.2/-3.0 3.3/-1.3 3.1/1.3 20+31
9 7.6/-13.5 |8.2/-10.3 |6.5/-6.8 5.6/-4.9 5.5/-3.6 1.4/-1.0 20+09
10 7.8/-11.5 | 7.0/-7.6 5.9/-4.1 4.9/-1.5 5.0/1.4 2.5/8.6 16+77

' 7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.

Table 14
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 71.5

Loss of Power at Dike 1-A

Run impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 7.4/-14.2 |6.9/-7.0 5.9/-1.9 5.0/0.6 4.8/0.7 1.7/0.7 20+31
2 7.4/-12.7 | 7.5/-6.4 6.5/-2.5 5.3/-1.0 4.8/-0.4 3.8/13.4 16+08
3 7.5/-18.2 |6.9/-11.5 |5.8/-7.5 4.8/-5.8 4.6/-5.0 1.1/1.1 20+31
4 8.0/-21.6 |8.3/-13.8 |7.2/-85 6.4/-6.4 6.1/-5.6 1.0/-4.3 19+41
5 7.4/-16.1 |6.8/-10.7 |5.9/-7.0 4.8/-6.6 4.9/-6.3 NO HIT
6 7.4/-16.6 |7.8/-13.4 |6.8/-11.7 |6.0/-10.1 5.2/-7.8 4.1/-3.5 12481
7 8.9/-17.6 |8.7/-124 [7.0/-94 6.2/-6.7 6.2/-5.7 2.3/0.4 16482
8 8.3/-18.3 |8.9/-13.5 |7.9/-9.1 7.3/-4.8 7.0/2.9 4.4/1.2 16+80
9 8.4/-16.4 |8.6/-11.3 |7.0/-7.2 5.7/-5.7 5.2/-4.2 2.9/-1.8 16+80
10 5.8/-15.5 | 5.4/-8.6 3.9/-4.7 4.1/-0.9 4.4/0.3 4.2/10.8 13478

1 7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.




Table 15
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 71.5

Loss of Power at Dike 1

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 7.0/-126 |6.1/-5.8 5.3/-.08 4.6/2.0 5.1/3.8 3.6/13.1 15449
2 6.2/-18.6 | 5.9/-125 |4.9/-84 5.0/-5.0 5.2/-1.9 3.4/71 15+79
3 8.0/-15.6 |8.2/-11.6 [7.2/-85 5.9/-6.2 6.1/-4.6 3.7/-0.3 14+78
4 8.0/-15.1 | 8.0/-10.6 |7.2/-6.7 6.2/-3.7 6.5/-1.8 4.1/5.6 16+69
5 8.3/-20.3 |8.4/1135 |6.7/-86 6.1/-4.7 6.5/-1.8 4.4/7.6 14+79
6 8.4/-169 |8.1/11.3 |6.9/-53 6.1/-2.4 6.4/-0.6 3.5/2.9 19+12
7 7.6/-15.7 17.6/-10.6 |6.6/-6.9 5.7/-4.9 6.0/-2.5 3.8/6.1 16+79
8 8.0/-19.0 | 7.1/1132 |6.0/-7.3 5.2/-4.2 5.7/-1.4 2.0/0.9 17+78
9 8.1/-12.1 | 8.3/-7.1 7.8/-3.4 6.1/-1.4 6.5/0.0 3.1/5.9 16+77
10 7.7/-16.4 |8.0/-125 |6.5/-10.2 |5.6/-9.1 5.7/-8.5 2.5/-4.2 16+79

!7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.

Table 16
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 71.5

Loss of Power at Dike 2

Run- Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 6.2/-20.8 | 4.1/-16.4 |3.3/-11.1 4.0/-6.3 4.2/-5.6 1.0/-3.7 17493
2 8.4/-19.0 | 7.2/-13.8 |5.6/-9.0 5.5/-7.7 5.8/-7.2 1.1/-2.7 19+26
3 5.8/-11.9 | 4.7/-5.9 3.8/-1.5 4.0/4.5 4.5/5.9 3.4/14.8 15476
4 7.4/-57 |82/-47 6.8/-4.9 6.7/-5.3 6.5/-5.9 1.6/-2.3 19+88
5 7.8/-154 |7.9/-111 |6.8/-7.1 6.3/-2.7 6.8/-0.6 3.9/6.2 16+21
6 7.7/-17.5 | 7.4/-10.5 |6.0/-7.1 5.9/-2.1 5.9/1.0 3.8/11.3 17410
7 7.9/-19.8 {176/-129 |6.3/-8.1 5.9/-3.8 6.4/-1.1 4.4/11.1 17+48
8 6.1/-15.9 |5.5/-11.3 | 4.8/-7.1 4.6/-2.4 5.2/0.0 1.2/2.4 20+28
9 7.7/-14.8 | 6.4/-10.0 |5.5/-7.1 5.5/-3.2 5.6/-0.7 2.3/2.0 20+37
10 7.0/-16.0 | 6.3/-11.7 |5.7/-95 5.4/-7.9 5.8/-7.5 1.4/-4.2 18+25

'7.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.




Table 17
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 71.5

Loss of Power at Dike 3

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 7.1/-19.6 |16.8/-13.2 |86.0/-7.9 6.0/-3.3 5.9/-0.2 2.3/8.4 20+27
2 6.9/-159 | 6.8/-9.7 6.4/-5.5 6.2/-1.3 6.2/0.9 4.4/11.6 17+08
3 7.2/-17.3 | 7.2/-11.1 |6.6/-5.8 6.1/-0.3 6.5/3.1 4.7/16.5 16+26
4 7.9/-13.4 |7.2/9.2 6.7/-6.1 6.3/-4.2 6.3/-3.3 1.4/4.9 20+27
5 7.2/-12.8 |} 6.5/-8.6 6.2/-5.2 5.8/-31 6.0/-1.8 1.7/5.1 20+25
6 7.3/-17.8 | 6.8/-11.7 |6.1/-6.9 6.0/-3.2 6.2/-1.5 4.9/7.1 16+44
7 6.4/-12.1 | 6.3/-9.0 5.8/-5.0 5.4/1.2 5.7/0.2 1.2/71 20+22
8 8.9/-16.7 | 7.4/-10.2 |6.6/-5.9 5.9/-2.2 6.5/-0.2 1.6/6.8 20+28
9 7.9/-125 |8.0/-9.1 7.3/-6.7 6.5/-3.6 7.1/-0.8 1.9/10.6 20+16
10 7.3/-16.0 | 7.3/-10.1 |6.7/-6.0 6.3/-3.0 6.6/-1.4 4.6/5.6 17405

17.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.

Table 18
Plan F-1, Guard Wall Impact Experiments

Total Riverflow = 335,000 cfs, First Powerhouse Q = 140,000 cfs, Upper Pool el 71.5

Loss of Power at Dike 4

Run Impact @
No. Dike 4 Dike 3 Dike 2 Dike 1 Dike 1-A | Guidewall | Station
1! 7.8/-13.6 | 7.5/-3.7 7.1/4.1 6.1/9.8 6.6/9.1 3.3/7.8 20+19
2 7.3/-12.8 | 6.9/-53 6.5/-1.7 6.0/8.3 5.9/121 4.3/21.5 14+22
3 6.9/-12.5 | 6.8/-4.9 6.1/2.7 5.9/10.6 6.1/14.0 5.4/21.7 14+21
4 6.4/-13.3 | 6.5/-5.9 5.9/0.2 5.8/6.9 5.9/9.9 4.7/20.2 14+95
5 5.5/-13.1 | 5.6/-8.5 5.4/-3.7 5.1/0.3 5.5/2.2 4.0/10.9 17418
6 7.8/-156.0 | 7.5/-8.5 6.5/-5.5 5.6/-1.5 5.7/0.2 2.8/7.9 17480
7 7.6/-15.4 | 7.1/-9.6 5.8/-5.1 5.2/-2.6 5.2/-0.2 1.3/-4.0 19+00
8 7.71-12.4 | 7.7/-45 6.8/3.3 6.6/12.1 6.4/16.3 3.3/21.4 14+63
9 5.4/-10.2 | 5.8/-3.9 5.3/2.5 5.1/10.5 5.3/13.7 1.7/4.6 18+00
10 8.1/-18.4 |7.7/-10.4 |6.9/-2.9 6.4/5.0 6.6/8.5 3.8/10.6 18450

17.2/9.0 represents 7.2 fps velocity and 9.0 deg rotation of tow relative to the center line of lock
when head of tow is at selected point. Positive angle is rotation toward the guard wall.




Photo 1. Original design, looking upstream, confetti showing current pattern in lock approach
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Plan F, looking downstream showing channel alignment
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Photo 7. Plan F, 335,000 cfs, looking downstream, confetti showing current pattern
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